skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Plasticizing effect of biodegradable dipropylene glycol bibenzoate and epoxidized linseed oil on diglycidyl ether of bisphenol A based epoxy resin
Abstract Major limitation for use of epoxy thermosets in engineering applications is its sudden brittle failure. In the present study dipropylene glycol dibenzoate (DPGDB) based plasticizer is used to modify diglycidyl ether of bisphenol A (DEGEBA) based epoxy resin system via simple blending technique. Bio‐based epoxidized linseed oil was also used to modify epoxy resin system and compared with DPGDB modified resin. For DPGDB modified resin storage modulus and loss modulus of the epoxy system modified with 10% plasticizer increased by 7.54% and 12.24%, respectively. The primary mechanism responsible for such behavior is improved crosslinking density. With 5% plasticizer loading, flexural strength increased by 21%. There was an improvement of 312.74% in strain at failure for 10% plasticizer loading, while preserving its mechanical strength. It was found that DPGDB based modification was better than epoxidized linseed oil modification.  more » « less
Award ID(s):
1735971
PAR ID:
10452563
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Applied Polymer Science
Volume:
138
Issue:
28
ISSN:
0021-8995
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Fully biodegradable unidirectional green composites with excellent tensile properties were fabricated by combining one of the highest specific strength liquid crystalline cellulose (LCC) fibers as the reinforcement and microfibrillated cellulose (MFC) strengthened nonedible avocado seed starch (AVS)-based resin. MFC/AVS resin was crosslinked using 1,2,3,4-butane tetracarboxylic acid as well as plasticized using sorbitol or glycerol. Combination of alkali, mechanical and thermal treatments improved LCC fiber fracture stress from 1.5 GPa to over 1.9 GPa and Young’s modulus from 49 to 64 GPa. While the type and amount of plasticizer used changed the fracture strain of MFC/AVS resin, they also showed significant influence on the mechanical properties of the unidirectional composites. These composites prepared by hand lay-up, based on modified LCC fibers resulted in fracture stress of over 380 MPa and Young’s modulus of 19.5 GPa with less than 40% fiber content. Results suggest that there is scope to improve the properties further by using higher fiber content and automated manufacturing. These ‘green’ composites with excellent strength and stiffness may be used in many applications such as construction, automobile and others. 
    more » « less
  2. Electrowetting and wettability-driven spreading of liquids on porous and nonporous substrates was investigated using impact of drops of epoxy resin, epoxy hardener, and epoxy resin and hardener, as well as silicone and turpentine oils with oil-soluble aniline dyes onto balsa wood and polypropylene surfaces. The experimental results revealed that the electric field stretched drops of epoxy resin, epoxy hardener, and epoxy resin and hardener after impact on polypropylene substrate in the long-term. The spreading of drops of epoxy resin and turpentine oil with dyes after impact onto porous balsa wood under the action of a 10 kV applied voltage was relatively weak. In addition, the measured footprint areas corresponding to drops of epoxy resin, epoxy hardener, and epoxy resin and hardener demonstrated a significant increase in the wetted areas driven by the applied voltage of 10 kV on polypropylene substrate, whereas on balsa wood, the footprint is practically unaffected by the electric field. Furthermore, it was determined that surface wettability was the main mechanism of spreading of epoxy resin, as well as silicone and turpentine oils with aniline dyes on porous balsa without the electric field applied. On the other hand, insufficient concentration of ions and counterions in silicone oil was responsible for the absence of electrohydrodynamic effects after impact of such drops onto porous balsa substrate subjected to high potentials of 7 and 10 kV. Hence, wettability-driven spreading with imbibition on balsa wood was the only reason for an increase in the wetted area in the case of silicone oil. 
    more » « less
  3. Algae is a promising sustainable feedstock for the generation of bio-crude oil, which is a sustainable alternative to fossil fuels, through the thermochemical process of hydrothermal liquefaction (HTL). However, this process also generates carbon particles (algae-derived carbon, ADC) as a significant byproduct. Herein, we report a brand-new and value-added use of ADC particles as a reinforcing agent for epoxy matrix composites (EMCs). ADC particles were synthesized through HTL processing of Chlorella vulgaris (a green microalgae) and characterized for morphology, average size, specific surface area, porosity, and functional groups. The ADC particles were subsequently integrated into a representative epoxy resin (EPON 862) as a reinforcing filler at loading levels of 0.25%, 0.5%, 1%, and 2% by weight. The tensile, flexural, and Izod impact properties, as well as the thermal stability, of the resulting EMCs were evaluated. It is revealed that the ADC particles are a sustainable and effective reinforcing agent for EMCs at ultra-low loading. Specifically, the ADC-reinforced EMC with 1 wt.% ADC showed improvements of ~24%, ~30%, ~31%, and ~57% in tensile strength, Young’s modulus, elongation at break, and work of fracture (WOF), respectively, and improvements of ~10%, ~37%, ~24%, and ~39% in flexural strength, flexural modulus, flexural elongation at break, and flexural WOF, respectively, as well as an improvement of ~54% in Izod impact strength, compared to those corresponding properties of neat epoxy. In the meantime, the thermal decomposition temperatures at 60% and 80% weight loss of the abovementioned ADC-reinforced EMC increased from 410 °C to 415 °C and from 448 °C to 515 °C in comparison with those of neat epoxy. This study highlighted the potential of sustainable ADC particles as a reinforcing agent in the field of polymer matrix composite materials, which represented a novel and sustainable approach that would mitigate greenhouse gas remission and reduce reliance on nonrenewable reinforcing fillers in the polymer composite industry. 
    more » « less
  4. Algae is a promising sustainable feedstock for the generation of bio-crude oil, which is a sustainable alternative to fossil fuels, through the thermochemical process of hydrothermal liquefaction (HTL). However, this process also generates carbon particles (algae-derived carbon, ADC) as a significant byproduct. Herein, we report a brand-new and value-added use of ADC particles as a reinforcing agent for epoxy matrix composites (EMCs). ADC particles were synthesized through HTL processing of Chlorella vulgaris (a green microalgae) and characterized for morphology, average size, specific surface area, porosity, and functional groups. The ADC particles were subsequently integrated into a representative epoxy resin (EPON 862) as a reinforcing filler at loading levels of 0.25%, 0.5%, 1%, and 2% by weight. The tensile, flexural, and Izod impact properties, as well as the thermal stability, of the resulting EMCs were evaluated. It is revealed that the ADC particles are a sustainable and effective reinforcing agent for EMCs at ultra-low loading. Specifically, the ADC-reinforced EMC with 1 wt.% ADC showed improvements of ~24%, ~30%, ~31%, and ~57% in tensile strength, Young’s modulus, elongation at break, and work of fracture (WOF), respectively, and improvements of ~10%, ~37%, ~24%, and ~39% in flexural strength, flexural modulus, flexural elongation at break, and flexural WOF, respectively, as well as an improvement of ~54% in Izod impact strength, compared to those corresponding properties of neat epoxy. In the meantime, the thermal decomposition temperatures at 60% and 80% weight loss of the abovementioned ADC-reinforced EMC increased from 410 °C to 415 °C and from 448 °C to 515 °C in comparison with those of neat epoxy. This study highlighted the potential of sustainable ADC particles as a reinforcing agent in the field of polymer matrix composite materials, which represented a novel and sustainable approach that would mitigate greenhouse gas remission and reduce reliance on nonrenewable reinforcing fillers in the polymer composite industry. 
    more » « less
  5. null (Ed.)
    Semi-crystalline carbon biochar is derived from spent coffee grounds (SCG) by a controlled pyrolysis process at high temperature/pressure conditions. Obtained biochar is characterized using XRD, SEM, and TEM techniques. Biochar particles are in the micrometer range with nanostructured morphologies. The SCG biochar thus produced is used as reinforcement in epoxy resin to 3 D print samples using the direct-write (DW) method with 1 and 3 wt. % loadings. Rheology results show that the addition of biochar makes resin viscous, enabling it to be stable soon after print; however, it could also lead to clogging of resin in printer head. The printed samples are characterized for chemical, thermal and mechanical properties using FTIR, TGA, DMA and flexure tests. Storage modulus improved with 1 wt. % biochar addition up to 27.5% and flexural modulus and strength increased up to 55.55% and 43.30% respectively. However, with higher loading of 3 wt. % both viscoelastic and flexural properties of 3D printed samples drastically reduced thus undermining the feasibility of 3D printing biochar reinforced epoxies at higher loadings. 
    more » « less