skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1736217

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Hundreds of full-depth temperature and salinity profiles collected by Deepglider autonomous underwater vehicles (AUVs) in the North Atlantic reveal robust signals in eddy isopycnal vertical displacement and horizontal current throughout the entire water column. In separate glider missions southeast of Bermuda, subsurface-intensified cold, fresh coherent vortices were observed with velocities exceeding 20 cm s −1 at depths greater than 1000 m. With vertical resolution on the order of 20 m or less, these full-depth glider slant profiles newly permit estimation of scaled vertical wavenumber spectra from the barotropic through the 40th baroclinic mode. Geostrophic turbulence theory predictions of spectral slopes associated with the forward enstrophy cascade and proportional to inverse wavenumber cubed generally agree with glider-derived quasi-universal spectra of potential and kinetic energy found at a variety of locations distinguished by a wide range of mean surface eddy kinetic energy. Water-column average spectral estimates merge at high vertical mode number to established descriptions of internal wave spectra. Among glider mission sites, geographic and seasonal variability implicate bottom drag as a mechanism for dissipation, but also the need for more persistent sampling of the deep ocean. Significance Statement Relative to upper-ocean measurements of temperature, salinity, and velocity, deep ocean measurements (below 2000 m) are fewer in number and more difficult to collect. Deep measurements are needed, however, to explore the nature of deep ocean circulation contributing to the global redistribution of heat and to determine how upper-ocean behavior impacts or drives deep motions. Understanding of geographic and temporal variability in vertical structures of currents and eddies enables improved description of energy pathways in the ocean driven by turbulent interactions. In this study, we use newly developed autonomous underwater vehicles, capable of diving to the seafloor and back on a near daily basis, to collect high-resolution full ocean depth measurements at various locations in the North Atlantic. These measurements reveal connections between surface and deep motions, and importantly show their time evolution. Results of analyzing these vertical structures reveal the deep ocean to regularly “feel” events in the upper ocean and permit new comparisons to deep motions in climate models. 
    more » « less
  2. Abstract Seagliders ® are buoyancy-driven autonomous underwater vehicles whose sub-surface position estimates are typically derived from velocities inferred using a flight model. We present a method for computing velocities and positions during the different phases typically encountered during a dive-climb profile based on a buoyancy-driven flight model. We compare these predictions to observations gathered from a Seaglider deployment on the acoustic tracking range in Dabob Bay (200 m depth, mean vehicle speeds ~30 cm s -1 ), permitting us to bound the position accuracy estimates and understand sources of various errors. We improve position accuracy estimates during long vehicle accelerations by numerically integrating the flight-model's fundamental momentum-balance equations. Overall, based on an automated estimation of flight-model parameters, we confirm previous work that predicted vehicle velocities in the dominant dive and climb phases are accurate to < 1 cm s -1 , which bounds the accumulated position error in time. However, in this energetic tidal basin, position error also accumulates due to unresolved depth-dependent flow superimposed upon an inferred depth-averaged current. 
    more » « less
  3. Idealized simulations of autonomous underwater glider sampling along sawtooth vertical–horizontal paths are carried out in two high-resolution ocean numerical models to explore the accuracy of isopycnal vertical displacement and geostrophic velocity profile estimates. The effects of glider flight speed, sampling pattern geometry, and measurement noise on velocity profile accuracy are explored to interpret recent full-ocean-depth Deepglider observations and provide sampling recommendations for glider missions. The average magnitude of velocity error profiles, defined as the difference between simulated glider-sampled geostrophic velocity profile estimates and model velocity profiles averaged over the spatial and temporal extent of corresponding simulated glider paths, is less than 0.02 m s−1over most of the water column. This accuracy and the accuracy of glider geostrophic shear profile estimates are dependent on the ratio of mesoscale eddy to internal wave velocity amplitude. Projection of normal modes onto full-depth vertical profiles of model and simulated glider isopycnal vertical displacement and geostrophic velocity demonstrates that gliders are capable of resolving barotropic and baroclinic structure through at least the eighth baroclinic mode. 
    more » « less