skip to main content


Title: Glider Sampling Simulations in High-Resolution Ocean Models

Idealized simulations of autonomous underwater glider sampling along sawtooth vertical–horizontal paths are carried out in two high-resolution ocean numerical models to explore the accuracy of isopycnal vertical displacement and geostrophic velocity profile estimates. The effects of glider flight speed, sampling pattern geometry, and measurement noise on velocity profile accuracy are explored to interpret recent full-ocean-depth Deepglider observations and provide sampling recommendations for glider missions. The average magnitude of velocity error profiles, defined as the difference between simulated glider-sampled geostrophic velocity profile estimates and model velocity profiles averaged over the spatial and temporal extent of corresponding simulated glider paths, is less than 0.02 m s−1over most of the water column. This accuracy and the accuracy of glider geostrophic shear profile estimates are dependent on the ratio of mesoscale eddy to internal wave velocity amplitude. Projection of normal modes onto full-depth vertical profiles of model and simulated glider isopycnal vertical displacement and geostrophic velocity demonstrates that gliders are capable of resolving barotropic and baroclinic structure through at least the eighth baroclinic mode.

 
more » « less
Award ID(s):
1736217
NSF-PAR ID:
10156278
Author(s) / Creator(s):
 ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Atmospheric and Oceanic Technology
Volume:
37
Issue:
6
ISSN:
0739-0572
Page Range / eLocation ID:
p. 975-992
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Hundreds of full-depth temperature and salinity profiles collected by Deepglider autonomous underwater vehicles (AUVs) in the North Atlantic reveal robust signals in eddy isopycnal vertical displacement and horizontal current throughout the entire water column. In separate glider missions southeast of Bermuda, subsurface-intensified cold, fresh coherent vortices were observed with velocities exceeding 20 cm s −1 at depths greater than 1000 m. With vertical resolution on the order of 20 m or less, these full-depth glider slant profiles newly permit estimation of scaled vertical wavenumber spectra from the barotropic through the 40th baroclinic mode. Geostrophic turbulence theory predictions of spectral slopes associated with the forward enstrophy cascade and proportional to inverse wavenumber cubed generally agree with glider-derived quasi-universal spectra of potential and kinetic energy found at a variety of locations distinguished by a wide range of mean surface eddy kinetic energy. Water-column average spectral estimates merge at high vertical mode number to established descriptions of internal wave spectra. Among glider mission sites, geographic and seasonal variability implicate bottom drag as a mechanism for dissipation, but also the need for more persistent sampling of the deep ocean. Significance Statement Relative to upper-ocean measurements of temperature, salinity, and velocity, deep ocean measurements (below 2000 m) are fewer in number and more difficult to collect. Deep measurements are needed, however, to explore the nature of deep ocean circulation contributing to the global redistribution of heat and to determine how upper-ocean behavior impacts or drives deep motions. Understanding of geographic and temporal variability in vertical structures of currents and eddies enables improved description of energy pathways in the ocean driven by turbulent interactions. In this study, we use newly developed autonomous underwater vehicles, capable of diving to the seafloor and back on a near daily basis, to collect high-resolution full ocean depth measurements at various locations in the North Atlantic. These measurements reveal connections between surface and deep motions, and importantly show their time evolution. Results of analyzing these vertical structures reveal the deep ocean to regularly “feel” events in the upper ocean and permit new comparisons to deep motions in climate models. 
    more » « less
  2. Abstract

    The vertical structure of subinertial variability is examined using full-depth horizontal velocity and vertical isopycnal displacement observations derived from the Ocean Observatory Initiative (OOI). Vertical profiles on time scales between 100 h and 1 yr or longer are characterized through empirical orthogonal function decomposition and qualitatively compared with theoretical modal predictions for the cases of flat, sloping, and rough bathymetry. OOI observations were obtained from mooring clusters at four deep-ocean sites: Argentine Basin, Southern Ocean, Station Papa, and Irminger Sea. Because no single OOI mooring in these arrays provides temperature, salinity, and horizontal velocity information over the full water column, sensor observations from two or more moorings are combined. Depths greater than ∼150–300 m were sampled by McLane moored profilers; in three of the four cases, two profilers were utilized on the moorings. Because of instrument failures on the deployments examined here, only ∼2 yr of full-ocean-depth observations are available from three of the four sites and some 3+ yr from the other. Results from the OOI “global” sites are contrasted with a parallel analysis of 3.5 yr of observations about the axis of the Gulf Stream where much of the subinertial variability is associated with stream meandering past the moorings. Looking across the observations, no universal vertical structure is found that characterizes the subinertial variability at the five sites examined; regional bathymetry, stratification, baroclinicity, nonlinearity, and the forcing (both local and remote) likely all play a role in shaping the vertical structure of the subinertial variability in individual ocean regions.

     
    more » « less
  3. Abstract

    Coastal physical processes are essential for the cross‐shore transport of meroplanktonic larvae to their benthic adult habitats. To investigate these processes, we released a swarm of novel, trackable, subsurface vehicles, the Mini‐Autonomous Underwater Explorers (M‐AUEs), which we programmed to mimic larval depth‐keeping behavior. The M‐AUE swarm measured a sudden net onshore transport of 30–70 m over 15–20 min, which we investigated in detail. Here, we describe a novel transport mechanism of depth‐keeping plankton revealed by these observations. In situ measurements and models showed that, as a weakly nonlinear internal wave propagated through the swarm, it deformed surface‐intensified, along‐isopycnal background velocities downward, accelerating depth‐keeping organisms onshore. These higher velocities increased both the depth‐keepers' residence time in the wave and total cross‐shore displacement, leading to wave‐induced transports twice those of fully Lagrangian organisms and four times those associated with the unperturbed background currents. Our analyses also show that integrating velocity time series from virtual larvae or mimics moving with the flow yields both larger and more accurate transport estimates than integrating velocity time series obtained at a point (Eulerian). The increased cross‐shore transport of organisms capable of vertical swimming in this wave/background‐current system is mathematically analogous to the increase in onshore transport associated with horizontal swimming in highly nonlinear internal waves. However, the mechanism described here requires much weaker swimming speeds (mm s−1vs. cm s−1) to achieve significant onshore transports, and meroplanktonic larvae only need to orient themselves vertically, not horizontally.

     
    more » « less
  4. Abstract

    In the Arctic Ocean, limited measurements indicate that the strongest mixing below the atmospherically forced surface mixed layer occurs where tidal currents are strong. However, mechanisms of energy conversion from tides to turbulence and the overall contribution of tidally driven mixing to Arctic Ocean state are poorly understood. We present measurements from the shelf north of Svalbard that show abrupt isopycnal vertical displacements of 10–50 m and intense dissipation associated with cross‐isobath diurnal tidal currents of0.15 m s−1. Energy from the barotropic tide accumulated in a trapped baroclinic lee wave during maximum downslope flow and was released around slack water. During a 6‐hr turbulent event, high‐frequency internal waves were present, the full 300‐m depth water column became turbulent, dissipation rates increased by a factor of 100, and turbulent heat flux averaged 15 W m−2compared with the background rate of 1 W m−2.

     
    more » « less
  5. Abstract

    Horizontal distribution of the vertically integrated barotropic‐to‐baroclinic energy conversion has been widely studied to examine the generation of internal tides at steep topography. The vertical structure of the energy conversion that provides insights into the associated dynamics, however, is masked by the often used depth‐integrated approach. Here, we reveal the vertical profile of barotropic‐to‐baroclinic energy conversion by employing an idealized ocean model in a slope‐shelf context forced byM2barotropic tidal flow. The model shows two vertically separated hotspots of energy conversion, one near the sloping bottom and the other at the thermocline, resulting from the stronger vertical velocity and enhancement of the density perturbation, respectively. Isolation of the hotspots demonstrates that baroclinic energy generated in the bottom layer radiates toward onshore and offshore primarily in the form of internal wave beams, whereas that generated at the thermocline propagates away in the form of internal wave modes. Although energy converted at the thermocline contributes to only a small portion of the total energy conversion, it plays an important role in onshore baroclinic energy radiation and can be significantly affected by the internal wave activity at the bottom layer. With a fixed bottom topography, the percentage of baroclinic energy generated at the thermocline is linearly related to a body force exerted by the barotropic tidal flow over topography that can be estimated analytically. This provides a convenient way to estimate the overall barotropic‐to‐baroclinic energy conversion over a continental slope in the real ocean by measuring the energy conversion in the thermocline only.

     
    more » « less