skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1737424

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Water level drawdowns are increasingly common in lakes and reservoirs worldwide as a result of both climate change and water management. Drawdowns can have direct effects on physical properties of a waterbody (e.g., by altering stratification and light dynamics), which can interact to modify the waterbody's biology and chemistry. However, the ecosystem‐level effects of drawdown remain poorly characterized in small, thermally stratified reservoirs, which are common in many regions of the world. Here, we intensively monitored a small eutrophic reservoir for 2 years, including before, during, and after a month‐long drawdown that reduced total reservoir volume by 36%. During drawdown, stratification strength (maximum buoyancy frequency) and surface phosphate concentrations both increased, contributing to a substantial surface phytoplankton bloom. The peak in phytoplankton biomass was followed by cascading changes in surface water chemistry associated with bloom degradation, with sequential peaks in dissolved organic carbon, dissolved carbon dioxide, and ammonium concentrations that were up to an order of magnitude higher than the previous year. Dissolved oxygen concentrations substantially decreased in surface waters during drawdown (to 41% saturation), which was associated with increased total iron and manganese concentrations. Combined, our results illustrate how changes in water level can have cascading effects on coupled physical, chemical, and biological processes. As climate change and water management continue to increase the frequency of drawdowns in lakes worldwide, our results highlight the importance of characterizing how water level variability can alter complex in‐lake ecosystem processes, thereby affecting water quality. 
    more » « less
  2. Abstract Declining oxygen concentrations in the deep waters of lakes worldwide pose a pressing environmental and societal challenge. Existing theory suggests that low deep‐water dissolved oxygen (DO) concentrations could trigger a positive feedback through which anoxia (i.e., very low DO) during a given summer begets increasingly severe occurrences of anoxia in following summers. Specifically, anoxic conditions can promote nutrient release from sediments, thereby stimulating phytoplankton growth, and subsequent phytoplankton decomposition can fuel heterotrophic respiration, resulting in increased spatial extent and duration of anoxia. However, while the individual relationships in this feedback are well established, to our knowledge, there has not been a systematic analysis within or across lakes that simultaneously demonstrates all of the mechanisms necessary to produce a positive feedback that reinforces anoxia. Here, we compiled data from 656 widespread temperate lakes and reservoirs to analyze the proposed anoxia begets anoxia feedback. Lakes in the dataset span a broad range of surface area (1–126,909 ha), maximum depth (6–370 m), and morphometry, with a median time‐series duration of 30 years at each lake. Using linear mixed models, we found support for each of the positive feedback relationships between anoxia, phosphorus concentrations, chlorophyllaconcentrations, and oxygen demand across the 656‐lake dataset. Likewise, we found further support for these relationships by analyzing time‐series data from individual lakes. Our results indicate that the strength of these feedback relationships may vary with lake‐specific characteristics: For example, we found that surface phosphorus concentrations were more positively associated with chlorophyllain high‐phosphorus lakes, and oxygen demand had a stronger influence on the extent of anoxia in deep lakes. Taken together, these results support the existence of a positive feedback that could magnify the effects of climate change and other anthropogenic pressures driving the development of anoxia in lakes around the world. 
    more » « less
  3. Abstract Freshwater lakes and reservoirs play a disproportionate role in the global organic carbon (OC) budget, as active sites for carbon processing and burial. Associations between OC and iron (Fe) are hypothesized to contribute substantially to the stabilization of OC in sediment, but the magnitude of freshwater Fe‐OC complexation remains unresolved. Moreover, global declines in bottom‐water oxygen concentrations have the potential to alter OC and Fe cycles in multiple ways, and the net effects of low‐oxygen (hypoxic) conditions on OC and Fe are poorly characterized. Here, we measured the pool of Fe‐bound OC (Fe‐OC) in surficial sediments from two eutrophic reservoirs, and we paired whole‐ecosystem experiments with sediment incubations to determine the effects of hypoxia on OC and Fe cycling over multiple timescales. Our experiments demonstrated that short periods (2–4 weeks) of hypoxia can increase aqueous Fe and OC concentrations while decreasing OC and Fe‐OC in surficial sediment by 30%. However, exposure to seasonal hypoxia over multiple years was associated with a 57% increase in sediment OC and no change in sediment Fe‐OC. These results suggest that the large sediment Fe‐OC pool (∼30% of sediment OC in both reservoirs) contains both oxygen‐sensitive and oxygen‐insensitive fractions, and over multiannual timescales OC respiration rates may play a more important role in determining the effect of hypoxia on sediment OC than Fe‐OC dissociation. Consequently, we anticipate that global declines in oxygen concentrations will alter OC and Fe cycling, with the direction and magnitude of effects dependent upon the duration of hypoxia. 
    more » « less
  4. Abstract Small freshwater reservoirs are ubiquitous and likely play an important role in global greenhouse gas (GHG) budgets relative to their limited water surface area. However, constraining annual GHG fluxes in small freshwater reservoirs is challenging given their footprint area and spatially and temporally variable emissions. To quantify the GHG budget of a small (0.1 km2) reservoir, we deployed an Eddy covariance (EC) system in a small reservoir located in southwestern Virginia, USA over 2 years to measure carbon dioxide (CO2) and methane (CH4) fluxes near‐continuously. Fluxes were coupled with in situ sensors measuring multiple environmental parameters. Over both years, we found the reservoir to be a large source of CO2(633–731 g CO2‐C m−2 yr−1) and CH4(1.02–1.29 g CH4‐C m−2 yr−1) to the atmosphere, with substantial sub‐daily, daily, weekly, and seasonal timescales of variability. For example, fluxes were substantially greater during the summer thermally stratified season as compared to the winter. In addition, we observed significantly greater GHG fluxes during winter intermittent ice‐on conditions as compared to continuous ice‐on conditions, suggesting GHG emissions from lakes and reservoirs may increase with predicted decreases in winter ice‐cover. Finally, we identified several key environmental variables that may be driving reservoir GHG fluxes at multiple timescales, including, surface water temperature and thermocline depth followed by fluorescent dissolved organic matter. Overall, our novel year‐round EC data from a small reservoir indicate that these freshwater ecosystems likely contribute a substantial amount of CO2and CH4to global GHG budgets, relative to their surface area. 
    more » « less
  5. Abstract Oxygen availability is decreasing in many lakes and reservoirs worldwide, raising the urgency for understanding how anoxia (low oxygen) affects coupled biogeochemical cycling, which has major implications for water quality, food webs, and ecosystem functioning. Although the increasing magnitude and prevalence of anoxia has been documented in freshwaters globally, the challenges of disentangling oxygen and temperature responses have hindered assessment of the effects of anoxia on carbon, nitrogen, and phosphorus concentrations, stoichiometry (chemical ratios), and retention in freshwaters. The consequences of anoxia are likely severe and may be irreversible, necessitating ecosystem‐scale experimental investigation of decreasing freshwater oxygen availability. To address this gap, we devised and conducted REDOX (the Reservoir Ecosystem Dynamic Oxygenation eXperiment), an unprecedented, 7‐year experiment in which we manipulated and modeled bottom‐water (hypolimnetic) oxygen availability at the whole‐ecosystem scale in a eutrophic reservoir. Seven years of data reveal that anoxia significantly increased hypolimnetic carbon, nitrogen, and phosphorus concentrations and altered elemental stoichiometry by factors of 2–5× relative to oxic periods. Importantly, prolonged summer anoxia increased nitrogen export from the reservoir by six‐fold and changed the reservoir from a net sink to a net source of phosphorus and organic carbon downstream. While low oxygen in freshwaters is thought of as a response to land use and climate change, results from REDOX demonstrate that low oxygen can also be adriverof major changes to freshwater biogeochemical cycling, which may serve as an intensifying feedback that increases anoxia in downstream waterbodies. Consequently, as climate and land use change continue to increase the prevalence of anoxia in lakes and reservoirs globally, it is likely that anoxia will have major effects on freshwater carbon, nitrogen, and phosphorus budgets as well as water quality and ecosystem functioning. 
    more » « less
  6. Abstract Lakes and reservoirs globally produce large quantities of methane and carbon dioxide in their sediments, which accumulate in the hypolimnia (bottom waters) during thermally stratified conditions. A key parameter controlling hypolimnetic greenhouse gas concentrations is dissolved oxygen. Land use and climate change have increased hypolimnetic anoxia worldwide in lakes and reservoirs, which is expected to affect their methane and carbon dioxide concentrations. We conducted whole‐ecosystem oxygenation experiments to assess the effects of oxygen concentrations on dissolved hypolimnetic greenhouse gas concentrations in comparison to a reference reservoir and calculated the maximum hypolimnetic global warming potential in both reservoirs over three summers. We observed significantly greater hypolimnetic methane under anoxic conditions but similar carbon dioxide concentrations, leading to greater hypolimnetic global warming potential of anoxic hypolimnia. Our study indicates that the global warming potential of hypolimnetic greenhouse gas concentrations may increase as the prevalence of hypolimnetic anoxia increases due to global change. 
    more » « less
  7. Abstract Near‐term iterative forecasting is a powerful tool for ecological decision support and has the potential to transform our understanding of ecological predictability. However, to this point, there has been no cross‐ecosystem analysis of near‐term ecological forecasts, making it difficult to synthesize diverse research efforts and prioritize future developments for this emerging field. In this study, we analyzed 178 near‐term (≤10‐yr forecast horizon) ecological forecasting papers to understand the development and current state of near‐term ecological forecasting literature and to compare forecast accuracy across scales and variables. Our results indicated that near‐term ecological forecasting is widespread and growing: forecasts have been produced for sites on all seven continents and the rate of forecast publication is increasing over time. As forecast production has accelerated, some best practices have been proposed and application of these best practices is increasing. In particular, data publication, forecast archiving, and workflow automation have all increased significantly over time. However, adoption of proposed best practices remains low overall: for example, despite the fact that uncertainty is often cited as an essential component of an ecological forecast, only 45% of papers included uncertainty in their forecast outputs. As the use of these proposed best practices increases, near‐term ecological forecasting has the potential to make significant contributions to our understanding of forecastability across scales and variables. In this study, we found that forecastability (defined here as realized forecast accuracy) decreased in predictable patterns over 1–7 d forecast horizons. Variables that were closely related (i.e., chlorophyll and phytoplankton) displayed very similar trends in forecastability, while more distantly related variables (i.e., pollen and evapotranspiration) exhibited significantly different patterns. Increasing use of proposed best practices in ecological forecasting will allow us to examine the forecastability of additional variables and timescales in the future, providing a robust analysis of the fundamental predictability of ecological variables. 
    more » « less
  8. Abstract Near‐term ecological forecasts provide resource managers advance notice of changes in ecosystem services, such as fisheries stocks, timber yields, or water quality. Importantly, ecological forecasts can identify where there is uncertainty in the forecasting system, which is necessary to improve forecast skill and guide interpretation of forecast results. Uncertainty partitioning identifies the relative contributions to total forecast variance introduced by different sources, including specification of the model structure, errors in driver data, and estimation of current states (initial conditions). Uncertainty partitioning could be particularly useful in improving forecasts of highly variable cyanobacterial densities, which are difficult to predict and present a persistent challenge for lake managers. As cyanobacteria can produce toxic and unsightly surface scums, advance warning when cyanobacterial densities are increasing could help managers mitigate water quality issues. Here, we fit 13 Bayesian state‐space models to evaluate different hypotheses about cyanobacterial densities in a low nutrient lake that experiences sporadic surface scums of the toxin‐producing cyanobacterium,Gloeotrichia echinulata. We used data from several summers of weekly cyanobacteria samples to identify dominant sources of uncertainty for near‐term (1‐ to 4‐week) forecasts ofG. echinulatadensities. Water temperature was an important predictor of cyanobacterial densities during model fitting and at the 4‐week forecast horizon. However, no physical covariates improved model performance over a simple model including the previous week's densities in 1‐week‐ahead forecasts. Even the best fit models exhibited large variance in forecasted cyanobacterial densities and did not capture rare peak occurrences, indicating that significant explanatory variables when fitting models to historical data are not always effective for forecasting. Uncertainty partitioning revealed that model process specification and initial conditions dominated forecast uncertainty. These findings indicate that long‐term studies of different cyanobacterial life stages and movement in the water column as well as measurements of drivers relevant to different life stages could improve model process representation of cyanobacteria abundance. In addition, improved observation protocols could better define initial conditions and reduce spatial misalignment of environmental data and cyanobacteria observations. Our results emphasize the importance of ecological forecasting principles and uncertainty partitioning to refine and understand predictive capacity across ecosystems. 
    more » « less
  9. Abstract To date, most research on cyanobacterial blooms in freshwater lakes has focused on the pelagic life stage. However, examining the complete cyanobacterial life cycle—including benthic life stages—may be needed to accurately predict future bloom dynamics. The current expectation, derived from the pelagic life stage, is that blooms will continue to increase due to the warmer temperatures and stronger stratification associated with climate change. However, stratification and mixing have contrasting effects on different life stages: while pelagic cyanobacteria benefit from strong stratification and are adversely affected by mixing, benthic stages can benefit from increased mixing. The net effects of these potentially counteracting processes are not yet known, since most aquatic ecosystem models do not incorporate benthic stages and few empirical studies have tracked the complete life cycle over multiple years. Moreover, for many regions, climate models project both stronger stratification and increased storm-induced mixing in the coming decades; the net effects of those physical processes, even on the pelagic life stage, are not yet understood. We therefore recommend an integrated research agenda to study the dual effects of stratification and mixing on the complete cyanobacterial life cycle—both benthic and pelagic stages—using models, field observations and experiments. 
    more » « less
  10. Abstract The relative importance of top‐down vs. bottom‐up control of phytoplankton biomass in aquatic ecosystems has been long debated and studied. However, few studies have considered the relative importance of top‐down vs. bottom‐up control on phytoplankton vertical distributions and characteristics of deep chlorophyll maxima (DCMs), and fewer still have investigated the importance of these drivers for multiple phytoplankton groups. We examined depth profiles of four phytoplankton spectral groups and a suite of top‐down (zooplankton) and bottom‐up (nutrients, temperature, and light) drivers from 51 north temperate lakes varying on gradients of size, trophic state, light availability, and thermal stratification. We used regression trees to identify the most important drivers of different vertical distribution metrics for each phytoplankton spectral group. The relative importance of top‐down vs. bottom‐up control varied across spectral groups and was related to the characteristics of the dominant taxa within each spectral group, as assessed by microscope counts. Zooplankton biomass was the most important driver of brown algae vertical distributions, likely because this group contained highly edible taxa (primarily chrysophytes), while thermal stratification predicted vertical distributions of buoyancy‐regulating cyanobacteria. Our work highlights the importance of examining phytoplankton community composition to improve understanding of DCM characteristics and top‐down vs. bottom‐up control of phytoplankton in aquatic systems. 
    more » « less