Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Antagonistic interactions are critical determinants of microbial community stability and composition, offering host benefits such as pathogen protection and providing avenues for antimicrobial control. While the ability to eliminate competitors confers an advantage to antagonistic microbes, it often incurs a fitness cost. Consequently, many microbes only produce toxins or engage in antagonistic behavior in response to specific cues like quorum sensing molecules or environmental stress. In laboratory settings, antagonistic microbes typically dominate over sensitive ones, raising the question of why both antagonistic and nonantagonistic microbes are found in natural environments and host microbiomes. Here, using both theoretical models and experiments with killer strains ofSaccharomyces cerevisiae, we show that “boom-and-bust” dynamics—periods of rapid growth punctuated by episodic mortality events—caused by temporal environmental fluctuations can favor nonantagonistic microbes that do not incur the growth rate cost of toxin production. Additionally, using control theory, we derive bounds on the competitive performance and identify optimal regulatory toxin-production strategies in various boom-and-bust environments where population dilutions occur either deterministically or stochastically over time. Our mathematical investigation reveals that optimal toxin regulation is much more beneficial to killers in stochastic, rather than deterministic, boom-and-bust environments. Overall, our findings show how both antagonistic and nonantagonistic microbes can thrive under varying environmental conditions.more » « less
-
Although adaptive cancer therapy shows promise in integrating evolutionary dynamics into treatment scheduling, the stochastic nature of cancer evolution has seldom been taken into account. Various sources of random perturbations can impact the evolution of heterogeneous tumors, making performance metrics of any treatment policy random as well. In this paper, we propose an efficient method for selecting optimal adaptive treatment policies under randomly evolving tumor dynamics. The goal is to improve the cumulative “cost” of treatment, a combination of the total amount of drugs used and the total treatment time. As this cost also becomes random in any stochastic setting, we maximize the probability of reaching the treatment goals (tumor stabilization or eradication) without exceeding a pre-specified cost threshold (or a “budget”). We use a novel Stochastic Optimal Control formulation and Dynamic Programming to find such “threshold-aware” optimal treatment policies. Our approach enables an efficient algorithm to compute these policies for a range of threshold values simultaneously. Compared to treatment plans shown to be optimal in a deterministic setting, the new “threshold-aware” policies significantly improve the chances of the therapy succeeding under the budget, which is correlated with a lower general drug usage. We illustrate this method using two specific examples, but our approach is far more general and provides a new tool for optimizing adaptive therapies based on a broad range of stochastic cancer models.more » « less
An official website of the United States government

Full Text Available