skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Threshold-awareness in adaptive cancer therapy
Although adaptive cancer therapy shows promise in integrating evolutionary dynamics into treatment scheduling, the stochastic nature of cancer evolution has seldom been taken into account. Various sources of random perturbations can impact the evolution of heterogeneous tumors, making performance metrics of any treatment policy random as well. In this paper, we propose an efficient method for selecting optimal adaptive treatment policies under randomly evolving tumor dynamics. The goal is to improve the cumulative “cost” of treatment, a combination of the total amount of drugs used and the total treatment time. As this cost also becomes random in any stochastic setting, we maximize the probability of reaching the treatment goals (tumor stabilization or eradication) without exceeding a pre-specified cost threshold (or a “budget”). We use a novel Stochastic Optimal Control formulation and Dynamic Programming to find such “threshold-aware” optimal treatment policies. Our approach enables an efficient algorithm to compute these policies for a range of threshold values simultaneously. Compared to treatment plans shown to be optimal in a deterministic setting, the new “threshold-aware” policies significantly improve the chances of the therapy succeeding under the budget, which is correlated with a lower general drug usage. We illustrate this method using two specific examples, but our approach is far more general and provides a new tool for optimizing adaptive therapies based on a broad range of stochastic cancer models.  more » « less
Award ID(s):
2111522 1738010 1645643
PAR ID:
10541668
Author(s) / Creator(s):
; ;
Publisher / Repository:
PLOS
Date Published:
Journal Name:
PLOS Computational Biology
Volume:
20
Issue:
6
ISSN:
1553-7358
Page Range / eLocation ID:
e1012165
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent clinical trials have shown that adaptive drug therapies can be more efficient than a standard cancer treatment based on a continuous use of maximum tolerated doses (MTD). The adaptive therapy paradigm is not based on a preset schedule; instead, the doses are administered based on the current state of tumour. But the adaptive treatment policies examined so far have been largely ad hoc. We propose a method for systematically optimizing adaptive policies based on an evolutionary game theory model of cancer dynamics. Given a set of treatment objectives, we use the framework of dynamic programming to find the optimal treatment strategies. In particular, we optimize the total drug usage and time to recovery by solving a Hamilton–Jacobi–Bellman equation. We compare MTD-based treatment strategy with optimal adaptive treatment policies and show that the latter can significantly decrease the total amount of drugs prescribed while also increasing the fraction of initial tumour states from which the recovery is possible. We conclude that the use of optimal control theory to improve adaptive policies is a promising concept in cancer treatment and should be integrated into clinical trial design. 
    more » « less
  2. Prostate cancer is a serious public health concern in the United States. The primary obstacle to effective long-term management for prostate cancer patients is the eventual development of treatment resistance. Due to the uniquely chaotic nature of the neoplastic genome, it is difficult to determine the evolution of tumor composition over the course of treatment. Hence, a drug is often applied continuously past the point of effectiveness, thereby losing any potential treatment combination with that drug permanently to resistance. If a clinician is aware of the timing of resistance to a particular drug, then they may have a crucial opportunity to adjust the treatment to retain the drug’s usefulness in a potential treatment combination or strategy. In this study, we investigate new methods of predicting treatment failure due to treatment resistance using a novel mechanistic model built on an evolutionary interpretation of Droop cell quota theory. We analyze our proposed methods using patient PSA and androgen data from a clinical trial of intermittent treatment with androgen deprivation therapy. Our results produce two indicators of treatment failure. The first indicator, proposed from the evolutionary nature of the cancer population, is calculated using our mathematical model with a predictive accuracy of 87.3% (sensitivity: 96.1%, specificity: 65%). The second indicator, conjectured from the implication of the first indicator, is calculated directly from serum androgen and PSA data with a predictive accuracy of 88.7% (sensitivity: 90.2%, specificity: 85%). Our results demonstrate the potential and feasibility of using an evolutionary tumor dynamics model in combination with the appropriate data to aid in the adaptive management of prostate cancer. 
    more » « less
  3. The failure of cancer treatments, including immunotherapy, continues to be a major obstacle in preventing durable remission. This failure often results from tumor evolution, both genotypic and phenotypic, away from sensitive cell states. Here, we propose a mathematical framework for studying the dynamics of adaptive immune evasion that tracks the number of tumor-associated antigens available for immune targeting. We solve for the unique optimal cancer evasion strategy using stochastic dynamic programming and demonstrate that this policy results in increased cancer evasion rates compared to a passive, fixed strategy. Our foundational model relates the likelihood and temporal dynamics of cancer evasion to features of the immune microenvironment, where tumor immunogenicity reflects a balance between cancer adaptation and host recognition. In contrast with a passive strategy, optimally adaptive evaders navigating varying selective environments result in substantially heterogeneous post-escape tumor antigenicity, giving rise to immunogenically hot and cold tumors. 
    more » « less
  4. Abstract Cancer is a global health problem that needs effective treatment strategies. Conventional treatments for solid-tumor cancers are unsatisfactory because they cause unintended harm to healthy tissues and are susceptible to cancer cell resistance. Nanoparticle-mediated photothermal therapy is a minimally invasive treatment for solid-tumor cancers that has immense promise as a standalone therapy or adjuvant to other treatments like chemotherapy, immunotherapy, or radiotherapy. To maximize the success of photothermal therapy, light-responsive nanoparticles can be camouflaged with cell membranes to endow them with unique biointerfacing capabilities that reduce opsonization, prolong systemic circulation, and improve tumor delivery through enhanced passive accumulation or homotypic targeting. This ensures a sufficient dose of photoresponsive nanoparticles arrives at tumor sites to enable their complete thermal ablation. This review summarizes the state-of-the-art in cell membrane camouflaged nanoparticles for photothermal cancer therapy and provides insights to the path forward for clinical translation. 
    more » « less
  5. We study the smoothed online quadratic optimization (SOQO) problem where, at each round t, a player plays an action xt in response to a quadratic hitting cost and an additional squared ℓ2-norm cost for switching actions. This problem class has strong connections to a wide range of application domains including smart grid management, adaptive control, and data center management, where switching-efficient algorithms are highly sought after. We study the SOQO problem in both adversarial and stochastic settings, and in this process, perform the first stochastic analysis of this class of problems. We provide the online optimal algorithm when the minimizers of the hitting cost function evolve as a general stochastic process, which, for the case of martingale process, takes the form of a distribution-agnostic dynamic interpolation algorithm that we call Lazy Adaptive Interpolation (LAI). Next, we present the stochastic-adversarial trade-off by proving an Ω(T) expected regret for the adversarial optimal algorithm in the literature (ROBD) with respect to LAI and, a sub-optimal competitive ratio for LAI in the adversarial setting. Finally, we present a best-of-both-worlds algorithm that obtains a robust adversarial performance while simultaneously achieving a near-optimal stochastic performance. 
    more » « less