skip to main content


Search for: All records

Award ID contains: 1738305

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Thionitrous acid (HSNO), the smallest S‐nitrosothiol, is emerging as a potential key intermediate in cellular redox regulation linking two signaling molecules H2S and NO. However, the chemical biology of HSNO remains poorly understood. A major hurdle is the lack of methods for selective detection of HSNO in biological systems. Herein, we report the rational design, synthesis, and evaluation of the first fluorescent probe TAP‐1 for HSNO detection. TAP‐1 showed high selectivity and sensitivity to HSNO in aqueous media and cells, providing a useful tool for understanding the functions of HSNO in biology.

     
    more » « less
  2. Abstract

    Near‐infrared (NIR) fluorescent dyes with favorable photophysical properties are highly useful for bioimaging, but such dyes are still rare. The development of a unique class of NIR dyes via modifying the rhodol scaffold with fused tetrahydroquinoxaline rings is described. These new dyes showed large Stokes shifts (>110 nm). Among them, WR3, WR4, WR5, and WR6 displayed high fluorescence quantum yields and excellent photostability in aqueous solutions. Moreover, their fluorescence properties were tunable by easy modifications on the phenolic hydroxy group. Based on WR6, two NIR fluorescent turn‐on probes, WSP‐NIR and SeSP‐NIR, were devised for the detection of H2S. The probe SeSP‐NIR was applied in visualizing intracellular H2S. These dyes are expected to be useful fluorophore scaffolds in the development of new NIR probes for bioimaging.

     
    more » « less
  3. The formation of S -nitrosothiols (SNO) in protein cysteine residues is an important post-translational modification elicited by nitric oxide (NO). This process is involved in virtually every class of cell signaling and has attracted considerable attention in redox biology. On the other hand, their unique structural characters make SNO potentially useful synthons. In this review, we summarized the fundamental chemical/physical properties of SNO. We also highlighted the reported chemical reactions of SNO, including the reactions with phosphine reagents, sulfinic acids, various nucleophiles, SNO-mediated radical additions, and the reactions of acyl SNO species. 
    more » « less