Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Agriculture provides a large amount of the world’s fish supply. Remote ocean farms need electric power, but most of them are not covered by the electric power grid. Ocean wave energy has the potential to provide power and enable fully autonomous farms. However, the lack of solid mounting structure makes it very challenging to harvest ocean power efficiently; the small-scale application makes high-efficiency conversion hard to achieve. To address these issues, we proposed a self-reactive ocean wave converter (WEC) and winch-based Power Take-Off (PTO) to enable a decent capture width ratio (CWR) and high power conversion efficiency. Two flaps are installed on a fish feed buoy and can move along linear guides. Ocean wave in both heave and surge directions drive the flaps to move and hence both wave potential energy and wave kinetic energy are harvested. The motion is transmitted by a winch to rotation motion to drive an electric generator, and power is harvested. Dynamic modeling is done by considering the harvester structure, the added mass, the damping, and the excitation force from ocean wave. The proposed WEC is simulated in ANSYS AQWA with excitations from regular wave and results in a gross CWR of 13%. A 1:3.5 scaled-down PTO is designed and prototyped. Bench-top experiment with Instron is done and the results show that the mechanical efficiency can reach up to 83% and has potential for real applications.more » « less
- 
            Free, publicly-accessible full text available July 1, 2026
- 
            This study presents an analysis of the fatigue damage experienced by mooring systems under extreme and operational wave conditions, with a discussion on the Reference Model 3 (RM3), a widely recognized point absorber wave energy converter (WEC), and the Reference Model 5 (RM5), a floating oscillating surge wave energy converter (FOSWEC). Utilizing the combined strengths of WEC-Sim and MoorDyn, both open-source simulation tools, the study investigates the dynamic behavior of mooring lines over the operational wave condition and a 100-year return period extreme wave condition. This study highlights the relationship between tension force and fatigue damage in mooring lines. The tension forces at various nodes of the mooring lines are calculated, revealing that the complex mooring design is causing a complex trend on the fatigue damage. Instead, variations in tension force show a more significant impact on cumulative fatigue damage, as evidenced by the higher damage observed in nodes experiencing greater tension variation. The findings contribute to a better understanding of the factors influencing fatigue damage in mooring lines of WECs and fatigue damage of different types of WECs, offering insights for more effective monitoring and strategies for WEC design optimization.more » « less
- 
            In response to the need for efficient, small-scale power sources for applications such as ocean observation and navigation, this paper presents the design, modeling, fabrication, testing, and analysis of a compact point-absorber wave energy converter (PAWEC) equipped with a mechanical direct-drive power takeoff (PTO) mechanism. The motivation is to address the mismatch between the natural frequencies of conventional PAWECs and dominant ocean wave frequencies, which limits energy capture. The primary objective is to enhance the efficiency of small-scale wave energy converters (WEC) without increasing the buoy size. To achieve this, we introduce a novel design element: an added mass plate (AMP) attached to the buoy. The AMP is devised to increase the WEC added mass and natural period, thereby aligning its natural frequency with dominant ocean wave frequencies. In our case study of a scaled model (1:2.2), the AMP effectively doubled the added mass of the WEC and increased its natural period by 32%. The WEC incorporates a rack and pinion mechanical motion rectifier-type PTO to convert the heave oscillations of the buoy into unidirectional rotation. The scaled model was tested in a wave basin facility with regular waves at zero angle of incidence. The WEC with AMP achieved a maximum root mean square power of 9.34 W, a nearly 30% increase compared to the conventional configuration without AMP, which produced 7.12 W under similar wave conditions. Numerical analysis using the boundary element method in the frequency domain for regular waves confirmed these findings. Finally, it has been derived that the proposed WEC, equipped with an AMP, offers enhanced efficiency in longer wave periods without the need for a larger buoy, establishing its viability as a power source for navigational buoys. This paper also offers a comprehensive guide to experimental techniques for characterizing a PAWEC in a laboratory setting, contributing valuable insights into the wave energy community.more » « less
- 
            Ocean wave energy has the potential to play a crucial role in the shift to renewable energy. In order to improve wave energy conversion techniques, it is necessary to recognize the sub-optimal nature of traditional sequential design processes due to the interconnectedness of subsystems. A codesign optimization in this paper seeks to include effects of all subsystems within one optimization loop in order to reach a fully optimal design. A width and height sweep serves as a brute force geometry optimization while optimizing the power take-off components and controls using a pseudospectral method for each geometry. An investigation of electrical power and mechanical power maximization also outlines the contrasting nature of the two objectives to illustrate electrical power maximization’s importance for identifying optimality. The codesign optimization leads to an optimal design with a width of 12 m and a height of 10 m. Ultimately, the codesign optimization leads to a 62% increase in the objective function over the optimal design from a sequential design process while also requiring only about half the power take-off torque.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available