skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Analysis of an innovative compact point absorber wave energy converter concept suitable for small-scale power applications
In response to the need for efficient, small-scale power sources for applications such as ocean observation and navigation, this paper presents the design, modeling, fabrication, testing, and analysis of a compact point-absorber wave energy converter (PAWEC) equipped with a mechanical direct-drive power takeoff (PTO) mechanism. The motivation is to address the mismatch between the natural frequencies of conventional PAWECs and dominant ocean wave frequencies, which limits energy capture. The primary objective is to enhance the efficiency of small-scale wave energy converters (WEC) without increasing the buoy size. To achieve this, we introduce a novel design element: an added mass plate (AMP) attached to the buoy. The AMP is devised to increase the WEC added mass and natural period, thereby aligning its natural frequency with dominant ocean wave frequencies. In our case study of a scaled model (1:2.2), the AMP effectively doubled the added mass of the WEC and increased its natural period by 32%. The WEC incorporates a rack and pinion mechanical motion rectifier-type PTO to convert the heave oscillations of the buoy into unidirectional rotation. The scaled model was tested in a wave basin facility with regular waves at zero angle of incidence. The WEC with AMP achieved a maximum root mean square power of 9.34 W, a nearly 30% increase compared to the conventional configuration without AMP, which produced 7.12 W under similar wave conditions. Numerical analysis using the boundary element method in the frequency domain for regular waves confirmed these findings. Finally, it has been derived that the proposed WEC, equipped with an AMP, offers enhanced efficiency in longer wave periods without the need for a larger buoy, establishing its viability as a power source for navigational buoys. This paper also offers a comprehensive guide to experimental techniques for characterizing a PAWEC in a laboratory setting, contributing valuable insights into the wave energy community.  more » « less
Award ID(s):
1738689
PAR ID:
10590518
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
Physics of Fluids
Volume:
35
Issue:
9
ISSN:
1070-6631
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Agriculture provides a large amount of the world’s fish supply. Remote ocean farms need electric power, but most of them are not covered by the electric power grid. Ocean wave energy has the potential to provide power and enable fully autonomous farms. However, the lack of solid mounting structure makes it very challenging to harvest ocean power efficiently; the small-scale application makes high-efficiency conversion hard to achieve. To address these issues, we proposed a self-reactive ocean wave converter (WEC) and winch-based Power Take-Off (PTO) to enable a decent capture width ratio (CWR) and high power conversion efficiency. Two flaps are installed on a fish feed buoy and can move along linear guides. Ocean wave in both heave and surge directions drive the flaps to move and hence both wave potential energy and wave kinetic energy are harvested. The motion is transmitted by a winch to rotation motion to drive an electric generator, and power is harvested. Dynamic modeling is done by considering the harvester structure, the added mass, the damping, and the excitation force from ocean wave. The proposed WEC is simulated in ANSYS AQWA with excitations from regular wave and results in a gross CWR of 13%. A 1:3.5 scaled-down PTO is designed and prototyped. Bench-top experiment with Instron is done and the results show that the mechanical efficiency can reach up to 83% and has potential for real applications. 
    more » « less
  2. null (Ed.)
    A novel Variable-Shape Buoy Wave Energy Converter (VSB WEC) that aims at eliminating the requirement of reactive power is analyzed in this paper. Unlike conventional Fixed Shape Buoy Wave Energy Converters (FSB WECs), the VSB WEC allows continuous shape-changing (flexible) responses to ocean waves. The non-linear interaction between the device and waves is demonstrated to result in more power when using simple, low-cost damping control system. High fidelity numerical simulations are conducted to compare the performance of a VSB WEC to a conventional FSB WEC, of the same volume and mass, in terms of power conversion, maximum displacements, and velocities. A Computational Fluid Dynamics (CFD) based Numerical Wave Tank (CNWT), developed using ANSYS 2-way fluid-structure interaction (FSI) is used for simulations. The results show that the average power conversion is significantly increased when using the VSB WEC. 
    more » « less
  3. Abstract Technologies to enhance the survivability of wave energy converters (WECs) in harsh ocean environment and reduce the difficulty and cost of deployment and operation are important. Traditional two-body point absorber with a rigid Power Take-off (PTO) may result in two essential problems on the deployment and operation. This study proposes a novel a two-body self-reactive point absorber with a flexible tether drive PTO. This flexible PTO design can avoid the request of supporting structures on the WEC to constrain the motion and harvest energy from multiple degree of freedoms (DOFs) motion without requirement of a taut mooring. System dynamics considering 4-DOF with the proposed flexible PTO system are formulated. A scaled prototype is designed, fabricated, and tested in a wave tank. Results show that the proposed flexible PTO can greatly increase the power absorption and add a reactive peak in the frequency domain. This study reveals that the proposed PTO is desirable for the two-body point absorber and thus holding the advantages of fast and easy deployment with slack mooring and good survivability under large wave conditions. 
    more » « less
  4. Wave Energy Converters (WECs) are designed to be deployed in arrays, usually in a limited space, to minimize the cost of installation, mooring, and maintenance. Control methods that attempt to maximize the harvested power often lead to power flow from the WEC to the ocean, at times, to maximize the overall harvested power from the ocean over a longer period. The Power Take-Off (PTO) units that can provide power to the ocean (reactive power) are usually more expensive and complex. In this work, an optimal control formulation is presented using Pontryagin’s minimum principle that aims to maximize the harvested energy subject to constraints on the maximum PTO force and power flow direction. An analytical formulation is presented for the optimal control of an array of WECs, assuming irregular wave input. Three variations of the developed control are tested: a formulation without power constraints, a formulation that only allows for positive power, and finally, a formulation that allows for finite reactive power. The control is compared with optimally tuned damping and bang–bang control. 
    more » « less
  5. Abstract Easily portable, small-sized ocean wave energy converters (WECs) may be used in many situations where large-sized WEC devices are not necessary or practical. Power maximization for small-sized WECs amplifies challenges that are not as difficult with large-sized devices, especially tuning the device’s natural frequency to match the wave frequency and achieve resonance. In this study, power maximization is performed for a small-sized, two-body attenuator WEC with a footprint constraint of about 1m. A thin, submerged tuning plate is added to each body to increase added mass without significantly increasing hydrostatic stiffness in order to reach resonance. Three different body cross-section geometries are analyzed. Device power absorption is determined through time domain simulations using WEC-Sim with a simplified two-degree-of-freedom (2DOF) model and a more realistic three-degree-of-freedom (3DOF) model. Different drag coefficients are used for each geometry to explore the effect of drag. A mooring stiffness study is performed with the 3DOF model to investigate the mooring impact. Based on the 2DOF and 3DOF power results, there is not a significant difference in power between the shapes if the same drag coefficient is used, but the elliptical shape has the highest power after assigning a different approximate drag coefficient to each shape. The mooring stiffness study shows that mooring stiffness can be increased in order to increase relative motion between the two bodies and consequently increase the power. 
    more » « less