Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ObjectiveThis study explores subjective and objective driving style similarity to identify how similarity can be used to develop driver-compatible vehicle automation. BackgroundSimilarity in the ways that interaction partners perform tasks can be measured subjectively, through questionnaires, or objectively by characterizing each agent’s actions. Although subjective measures have advantages in prediction, objective measures are more useful when operationalizing interventions based on these measures. Showing how objective and subjective similarity are related is therefore prudent for aligning future machine performance with human preferences. MethodsA driving simulator study was conducted with stop-and-go scenarios. Participants experienced conservative, moderate, and aggressive automated driving styles and rated the similarity between their own driving style and that of the automation. Objective similarity between the manual and automated driving speed profiles was calculated using three distance measures: dynamic time warping, Euclidean distance, and time alignment measure. Linear mixed effects models were used to examine how different components of the stopping profile and the three objective similarity measures predicted subjective similarity. ResultsObjective similarity using Euclidean distance best predicted subjective similarity. However, this was only observed for participants’ approach to the intersection and not their departure. ConclusionDeveloping driving styles that drivers perceive to be similar to their own is an important step toward driver-compatible automation. In determining what constitutes similarity, it is important to (a) use measures that reflect the driver’s perception of similarity, and (b) understand what elements of the driving style govern subjective similarity.more » « less
-
Free, publicly-accessible full text available March 1, 2026
-
Free, publicly-accessible full text available February 1, 2026
-
Extended exposure to reliable automation may lead to overreliance as evidenced by poor responses to auto-mation errors. Individual differences in trust may also influence responses. We investigated how these factors affect response to automation errors in a driving simulator study comprised of stop-controlled and uncon-trolled intersections. Drivers experienced reliable vehicle automation during six drives where they indicated if they felt the automation was going too slow or too fast by pressing the accelerator or brake pedal. Engage-ment via pedal presses did not affect the automation but offered an objective measure of trust in automation. In the final drive, an error occurred where the vehicle failed to stop at a stop-controlled intersection. Drivers’ response to the error was inferred from brake presses. Mixture models showed bimodal response times and revealed that drivers with high trust were less likely to respond to automation errors than drivers with low trust.more » « less
-
This paper presents a data-driven framework to quantitatively analyze the disturbance amplification behavior of automated vehicles in car-following (CF). The data-driven framework can be applied to unknown CF controllers based on the concept of empirical frequency response function (FRF). Specifically, a well-known signal processing method, Welch’s method, together with a short time Fourier transformation is developed to extract the empirical transfer functions from vehicle trajectories. The method is first developed assuming a generic linear controller with time-invariant CF control features (e.g., control gains) and later extended to capture time-variant features. The proposed methods are evaluated for estimation consistencies via synthetic data-based simulations. The evaluation includes the performances of the linear approximation accuracy for a linear time-invariant controller, a nonlinear controller, and a linear time-variant controller. Results indicate that our framework can provide reasonably consistent results as theoretical ones in terms of disturbance amplification. Further it can perform better than a linear theoretical analysis of disturbance amplification, particularly when nonlinearity in CF behavior is present. The methods are applied to existing field data collected from vehicles with adaptive cruise control (ACC) on the market. Findings reveal that all tested vehicles tend to amplify disturbances, particularly in low frequency (< 0.5 Hz). Further, the results demonstrate that these ACC vehicles exhibit time-varying features in terms of disturbance amplification ratio depending on the leading vehicle trajectories.more » « less
-
null (Ed.)Physics-based simulation provides an accelerated and safe avenue for developing, verifying, and testing robotic control algorithms and prototype designs. In the quest to leverage machine learning for developing AI-enabled robots, physics-based simulation can generate a wealth of labeled training data in a short amount of time. Physics-based simulation also creates an ideal proving ground for developing intelligent robots that can both learn from their mistakes and be verifiable. This article provides an overview of the use of simulation in robotics, emphasizing how robots (with sensing and actuation components), the environment they operate in, and the humans they interact with are simulated in practice. It concludes with an overview of existing tools for simulation in robotics and a short discussion of aspects that limit the role that simulation plays today in intelligent robot design.more » « less
-
null (Ed.)Abstract Computer simulation can be a useful tool when designing robots expected to operate independently in unstructured environments. In this context, one needs to simulate the dynamics of the robot’s mechanical system, the environment in which the robot operates, and the sensors which facilitate the robot’s perception of the environment. Herein, we focus on the sensing simulation task by presenting a virtual sensing framework built alongside an open-source, multi-physics simulation platform called Chrono. This framework supports camera, lidar, GPS, and IMU simulation. We discuss their modeling as well as the noise and distortion implemented to increase the realism of the synthetic sensor data. We close with two examples that show the sensing simulation framework at work: one pertains to a reduced scale autonomous vehicle and the second is related to a vehicle driven in a digital replica of a Madison neighborhood.more » « less
An official website of the United States government
