skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparing Subjective Similarity of Automated Driving Styles to Objective Distance-Based Similarity
ObjectiveThis study explores subjective and objective driving style similarity to identify how similarity can be used to develop driver-compatible vehicle automation. BackgroundSimilarity in the ways that interaction partners perform tasks can be measured subjectively, through questionnaires, or objectively by characterizing each agent’s actions. Although subjective measures have advantages in prediction, objective measures are more useful when operationalizing interventions based on these measures. Showing how objective and subjective similarity are related is therefore prudent for aligning future machine performance with human preferences. MethodsA driving simulator study was conducted with stop-and-go scenarios. Participants experienced conservative, moderate, and aggressive automated driving styles and rated the similarity between their own driving style and that of the automation. Objective similarity between the manual and automated driving speed profiles was calculated using three distance measures: dynamic time warping, Euclidean distance, and time alignment measure. Linear mixed effects models were used to examine how different components of the stopping profile and the three objective similarity measures predicted subjective similarity. ResultsObjective similarity using Euclidean distance best predicted subjective similarity. However, this was only observed for participants’ approach to the intersection and not their departure. ConclusionDeveloping driving styles that drivers perceive to be similar to their own is an important step toward driver-compatible automation. In determining what constitutes similarity, it is important to (a) use measures that reflect the driver’s perception of similarity, and (b) understand what elements of the driving style govern subjective similarity.  more » « less
Award ID(s):
1739869
PAR ID:
10389950
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Human Factors: The Journal of the Human Factors and Ergonomics Society
Volume:
66
Issue:
5
ISSN:
0018-7208
Format(s):
Medium: X Size: p. 1545-1563
Size(s):
p. 1545-1563
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Autonomous Vehicle (AV) technology has the potential to significantly improve driver safety. Unfortunately, driver could be reluctant to ride with AVs due to the lack of trust and acceptance of AV’s driving styles. The present study investigated the impact of driver’s driving style (aggressive/defensive) and the designed driving styles of AVs (aggressive/defensive) on driver’s trust, acceptance, and take-over behavior in fully autonomous vehicles. Thirty-two participants were classified into two groups based on their driving styles using the Aggressive Driving Scale and experienced twelve scenarios in either an aggressive AV or a defensive AV. Results revealed that drivers’ trust, acceptance, and takeover frequency were significantly influenced by the interaction effects between AV’s driving style and driver’s driving style. The findings implied that driver’s individual differences should be considered in the design of AV’s driving styles to enhance driver’s trust and acceptance of AVs and reduce undesired take over behaviors. 
    more » « less
  2. ObjectiveOur objectives were to assess the efficacy of active inference models for capturing driver takeovers from automated vehicles and to evaluate the links between model parameters and self-reported cognitive fatigue, trust, and situation awareness. BackgroundControl transitions between human drivers and automation pose a substantial safety and performance risk. Models of driver behavior that predict these transitions from data are a critical tool for designing safer, human-centered, systems but current models do not sufficiently account for human factors. Active inference theory is a promising approach to integrate human factors because of its grounding in cognition and translation to a quantitative modeling framework. MethodWe used data from a driving simulation to develop an active inference model of takeover performance. After validating the model’s predictions, we used Bayesian regression with a spike and slab prior to assess substantial correlations between model parameters and self-reported trust, situation awareness, fatigue, and demographic factors. ResultsThe model accurately captured driving takeover times. The regression results showed that increases in cognitive fatigue were associated with increased uncertainty about the need to takeover, attributable to mapping observations to environmental states. Higher situation awareness was correlated with a more precise understanding of the environment and state transitions. Higher trust was associated with increased variance in environmental conditions associated with environmental states. ConclusionThe results align with prior theory on trust and active inference and provide a critical connection between complex driver states and interpretable model parameters. ApplicationThe active inference framework can be used in the testing and validation of automated vehicle technology to calibrate design parameters to ensure safety. 
    more » « less
  3. Driver-assistance systems are becoming more commonplace; however, the realized safety benefits of these technologies depend on whether a person accepts and adopts automated driving aids. One challenge to adoption could be a preference-performance dissociation (PPD), which is a mismatch between a self-perceived desire and an objective need for assistance. Research has reported PPD in driving but has not extensively leveraged driving performance data to confirm its existence. Thus, the goal of this study was to compare drivers’ self-reported need for vehicle assistance to their objective driving performance. Twenty-one participants drove on a simulated road and traversed challenging, real-world roadway obstacles. Afterwards, they were asked about their preference for automated vehicle assistance (e.g., steering and braking) during their drive. Overall, some participants exhibited PPD that included both over- and underestimating their need for a particular type of automated assistance. Findings can be used to develop shared control and adaptive automation strategies tailored to particular users and contexts across various safety-critical environments. 
    more » « less
  4. Denison, S.; Mack, M.; Xu, Y.; Armstrong, B.C. (Ed.)
    Do people perceive shapes to be similar based purely on their physical features? Or is visual similarity influenced by top-down knowledge? In the present studies, we demonstrate that top-down information – in the form of verbal labels that people associate with visual stimuli – predicts visual similarity as measured using subjective (Experiment 1) and objective (Experiment 2) tasks. In Experiment 1, shapes that were previously calibrated to be (putatively) perceptually equidistant were more likely to be grouped together if they shared a name. In Experiment 2, more nameable shapes were easier for participants to discriminate from other images, again controlling for their perceptual distance. We discuss what these results mean for constructing visual stimuli spaces that are perceptually uniform and discuss theoretical implications of the fact that perceptual similarity is sensitive to top-down information such as the ease with which an object can be named. 
    more » « less
  5. ObjectiveWe examine how human operators adjust their trust in automation as a result of their moment-to-moment interaction with automation. BackgroundMost existing studies measured trust by administering questionnaires at the end of an experiment. Only a limited number of studies viewed trust as a dynamic variable that can strengthen or decay over time. MethodSeventy-five participants took part in an aided memory recognition task. In the task, participants viewed a series of images and later on performed 40 trials of the recognition task to identify a target image when it was presented with a distractor. In each trial, participants performed the initial recognition by themselves, received a recommendation from an automated decision aid, and performed the final recognition. After each trial, participants reported their trust on a visual analog scale. ResultsOutcome bias and contrast effect significantly influence human operators’ trust adjustments. An automation failure leads to a larger trust decrement if the final outcome is undesirable, and a marginally larger trust decrement if the human operator succeeds the task by him/herself. An automation success engenders a greater trust increment if the human operator fails the task. Additionally, automation failures have a larger effect on trust adjustment than automation successes. ConclusionHuman operators adjust their trust in automation as a result of their moment-to-moment interaction with automation. Their trust adjustments are significantly influenced by decision-making heuristics/biases. ApplicationUnderstanding the trust adjustment process enables accurate prediction of the operators’ moment-to-moment trust in automation and informs the design of trust-aware adaptive automation. 
    more » « less