skip to main content


Search for: All records

Award ID contains: 1739969

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cyber physical system (CPS) Critical infrastructures (CIs) like the power and energy systems are increasingly becoming vulnerable to cyber attacks. Mitigating cyber risks in CIs is one of the key objectives of the design and maintenance of these systems. These CPS CIs commonly use legacy devices for remote monitoring and control where complete upgrades are uneconomical and infeasible. Therefore, risk assessment plays an important role in systematically enumerating and selectively securing vulnerable or high-risk assets through optimal investments in the cybersecurity of the CPS CIs. In this paper, we propose a CPS CI security framework and software tool, CySec Game, to be used by the CI industry and academic researchers to assess cyber risks and to optimally allocate cybersecurity investments to mitigate the risks. This framework uses attack tree, attack-defense tree, and game theory algorithms to identify high-risk targets and suggest optimal investments to mitigate the identified risks. We evaluate the efficacy of the framework using the tool by implementing a smart grid case study that shows accurate analysis and feasible implementation of the framework and the tool in this CPS CI environment. 
    more » « less
  2. Motivated by the problem of optimal security resource deployment in critical infrastructure systems, we study a non-zero-sum security game over the substations of a power system in which the player payoffs depend upon the maturity of the security resources at each substation according to NERCCIP standards. Extending previous work, we give a structural characterization of the possible types of Nash equilibria in our non-zero-sum additive security game model, present feasibility conditions for equilibria of each type, and propose a novel algorithm to compute an equilibrium. Utilizing our characterization of the possible equilibria in additive security games, we propose a method to obtain a suboptimal solution to the problem of maximizing the expected outcome to the system operator by varying the maturity of security resources deployed at each substation and demonstrate the method by simulation. 
    more » « less
  3. Securing cyber-physical systems (CPS) like the Smart Grid against cyber attacks is making it imperative for the system defenders to plan for investing in the cybersecurity resources of cyber-physical critical infrastructure. Given the constraint of limited resources that can be invested in the cyber layer of the cyber-physical smart grid, optimal allocation of these resources has become a priority for the defenders of the grid. This paper proposes a methodology for optimizing the allocation of resources for the cybersecurity infrastructure in a smart grid using attack-defense trees and game theory. The proposed methodology uses attack-defense trees (ADTs) for analyzing the cyber-attack paths (attacker strategies) within the grid and possible defense strategies to prevent those attacks. The attack-defense strategy space (ADSS) provides a comprehensive list of interactions between the attacker and the defender of the grid. The proposed methodology uses the ADSS from the ADT analysis for a game-theoretic formulation (GTF) of attacker-defender interaction. The GTF allows us to obtain strategies for the defender in order to optimize cybersecurity resource allocation in the smart grid. The implementation of the proposed methodology is validated using a synthetic smart grid model equipped with cyber and physical components depicting the feasibility of the methodology for real-world implementation. 
    more » « less
  4. The increasing penetration of cyber systems into smart grids has resulted in these grids being more vulnerable to cyber physical attacks. The central challenge of higher order cyber-physical contingency analysis is the exponential blow-up of the attack surface due to a large number of attack vectors. This gives rise to computational challenges in devising efficient attack mitigation strategies. However, a system operator can leverage private information about the underlying network to maintain a strategic advantage over an adversary equipped with superior computational capability and situational awareness. In this work, we examine the following scenario: A malicious entity intrudes the cyber-layer of a power network and trips the transmission lines. The objective of the system operator is to deploy security measures in the cyber-layer to minimize the impact of such attacks. Due to budget constraints, the attacker and the system operator have limits on the maximum number of transmission lines they can attack or defend. We model this adversarial interaction as a resource-constrained attacker-defender game. The computational intractability of solving large security games is well known. However, we exploit the approximately modular behavior of an impact metric known as the disturbance value to arrive at a linear-time algorithm for computing an optimal defense strategy. We validate the efficacy of the proposed strategy against attackers of various capabilities and provide an algorithm for a real-time implementation. 
    more » « less
  5. In this work, we investigate a security game between an attacker and a defender, originally proposed in [6]. As is well known, the combinatorial nature of security games leads to a large cost matrix. Therefore, computing the value and optimal strategy for the players becomes computationally expensive. In this work, we analyze a special class of zero-sum games in which the payoff matrix has a special structure which results from the additive property of the utility function. Based on variational principles, we present structural properties of optimal attacker as well as defender’s strategy. We propose a linear-time algorithm to compute the value based on the structural properties, which is an improvement from our previous result in [6], especially in the context of large-scale zero-sum games. 
    more » « less
  6. With the increasing penetration of cyber systems in the power grid, it is becoming increasingly imperative to deploy adequate security measures all across the grid to secure it against any kind of cyber threat. Since financial resources for investment in security are limited, optimal allocation of these cybersecurity resources in the grid is extremely important. At the same time, optimization of these investments proves to be challenging due to the uncertain behavior of attackers and the dynamically changing threat landscape. Existing solutions for this problem either do not address the dynamic behavior of adversaries or lack in the practical feasibility of the defense models. This paper addresses the problem of optimizing investment strategies in the cybersecurity infrastructure of a smart grid using a game-theoretic approach. The attacker is modeled using various attacker profiles which represent the possible types of adversaries in the context of CPS. Each profile has certain characteristics to bring out the aspect of uncertain behavior of the adversaries. The defender is modeled with various pragmatic characteristics that can be easily translated to the real-world grid scenarios for implementation. These characteristics include the standards laid down by the North American Electric Reliability Corporation (NERC) for Critical Infrastructure Protection (CIP) commonly known as the NERC-CIP standards. The game-theoretic framework allows us to obtain optimal strategies that the defender of the grid can adopt to minimize its losses against the possible attack threats on the grid. The concept is illustrated by a simplistic 3-bus power system model case study which depicts how the solution can be translated to practical implementation in the actual grid. 
    more » « less