skip to main content


Search for: All records

Award ID contains: 1740119

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    A negative‐capacitance high electron mobility transistor (NC‐HEMT) with low hysteresis in the subthreshold region is demonstrated in the wide bandgap AlGaN/GaN material system using sputtered BaTiO3as a “weak” ferroelectric gate in conjunction with a conventional SiNxdielectric. An enhancement in the capacitance for BaTiO3/SiNxgate stacks is observed in comparison to control structures with SiNxgate dielectrics directly indicating the negative capacitance contribution of the ferroelectric BaTiO3layer. A significant reduction in the minimum subthreshold slope for the NC‐HEMTs is obtained in contrast to standard metal‐insulator‐semiconductor HEMTs with SiNxgate dielectrics—97.1 mV dec−1versus 145.6 mV dec−1—with almost no hysteresis in theIDVGtransfer curves. These results are promising for the integration of ferroelectric perovskite oxides with III‐Nitride devices toward NC‐field‐effect transistor switches with reduced power consumption.

     
    more » « less
  2. null (Ed.)