skip to main content


Search for: All records

Award ID contains: 1740130

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We investigate the ground states of spin models defined on networks that we imprint (e.g., non-complex random networks like Erdos–Renyi, or complex networks like Watts–Strogatz, and Barabasi–Albert), and their response to decohering processes which we model with network attacks. We quantify the complexity of these ground states, and their response to the attacks, by calculating distributions of network measures of an emergent network whose link weights are the pairwise mutual information between spins. We focus on attacks which projectively measure spins. We find that the emergent networks in the ground state do not satisfy the usual criteria for complexity, and their average properties are captured well by a single dimensionless parameter in the Hamiltonian. While the response of classical networks to attacks is well-studied, where classical complex networks are known to be more robust to random attacks than random networks, we find counter-intuitive results for our quantum networks. We find that the ground states for Hamiltonians defined on different classes of imprinted networks respond similarly to all our attacks, and the attacks rescale the average properties of the emergent network by a constant factor. Mean field theory explains these results for relatively dense networks, but we also find the simple rescaling behavior away from the regime of validity of mean field theory. Our calculations indicate that complex spin networks are not more robust to projective measurement attacks, and presumably also other quantum attacks, than non-complex spin networks, in contrast to the classical case. Understanding the response of the spin networks to decoherence and attacks will have applications in understanding the physics of open quantum systems, and in designing robust complex quantum systems—possibly even a robust quantum internet in the long run—that is maximally resistant to decoherence.

     
    more » « less
  2. Abstract

    We explore the quantum many-body physics of a three-component Bose-Einstein condensate in an optical lattice driven by laser fields inVand Λ configurations. We obtain exact analytical expressions for the energy spectrum and amplitudes of elementary excitations, and discover symmetries among them. We demonstrate that the applied laser fields induce a gap in the otherwise gapless Bogoliubov spectrum. We find that Landau damping of the collective modes above the energy of the gap is carried by laser-induced roton modes and is considerably suppressed compared to the phonon-mediated damping endemic to undriven scalar condensates

     
    more » « less
  3. Abstract Quantum cellular automata (QCA) evolve qubits in a quantum circuit depending only on the states of their neighborhoods and model how rich physical complexity can emerge from a simple set of underlying dynamical rules. The inability of classical computers to simulate large quantum systems hinders the elucidation of quantum cellular automata, but quantum computers offer an ideal simulation platform. Here, we experimentally realize QCA on a digital quantum processor, simulating a one-dimensional Goldilocks rule on chains of up to 23 superconducting qubits. We calculate calibrated and error-mitigated population dynamics and complex network measures, which indicate the formation of small-world mutual information networks. These networks decohere at fixed circuit depth independent of system size, the largest of which corresponding to 1,056 two-qubit gates. Such computations may enable the employment of QCA in applications like the simulation of strongly-correlated matter or beyond-classical computational demonstrations. 
    more » « less
  4. Abstract We obtain the exact analytical solution for the continuously driven qutrit in the V and Λ configurations governed by the Lindblad master equation. We calculate the linear susceptibility in each system, determining regimes of transient gain without inversion, and identify exact parameter values for superluminal, vanishing, and negative group velocity for the probe field. 
    more » « less
  5. Large multipartite quantum systems tend to rapidly reach extraordinary levels of complexity as their number of constituents and entanglement links grow. Here we use complex network theory to study a class of continuous variables quantum states that present both multipartite entanglement and non-Gaussian statistics. In particular, the states are built from an initial imprinted cluster state created via Gaussian entangling operations according to a complex network structure. To go beyond states that can be easily simulated via classical computers we engender non-Gaussian statistics via multiple photon subtraction operations. We then use typical networks measures, the degree and clustering, to characterize the emergent complex network of photon-number correlations after photon subtractions. We show that, in contrast to regular clusters, in the case of imprinted complex network structures the emergent correlations are strongly affected by photon subtraction. On the one hand, we unveil that photon subtraction universally increases the average photon-number correlations, regardless of the imprinted network structure. On the other hand, we show that the shape of the distributions in the emergent networks after subtraction is greatly influenced by the structure of the imprinted network, as witnessed by their higher-moments. Thus for the field of network theory, we introduce a new class of networks to study. At the same time for the field of continuous variable quantum states, this work presents a new set of practical tools to benchmark systems of increasing complexity. 
    more » « less