skip to main content


Search for: All records

Award ID contains: 1740248

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    A highly reliable memristive device based on tantalum‐doped silicon oxide is reported, which exhibits high uniformity, robust endurance (≈1 × 109cycles), fast switching speed, long retention, and analog conductance modulation. Devices with junction areas ranging from microscale to as small as 60 × 15 nm2are fabricated and electrically characterized. ON‐/OFF‐ conductance and reset current show weak area dependence when the device is relatively large, and they become proportional to the device area when further scaled down. Two‐layer devices with repeatable switching behavior are achieved. The current study shows the potentials of Ta:SiO2‐based 3D vertical devices for memory and computing applications. It also suggests that doping of the switching layer is an efficient approach to engineer the performance of memristive devices.

     
    more » « less