skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Scalable 3D Ta:SiO x Memristive Devices
Abstract A highly reliable memristive device based on tantalum‐doped silicon oxide is reported, which exhibits high uniformity, robust endurance (≈1 × 109cycles), fast switching speed, long retention, and analog conductance modulation. Devices with junction areas ranging from microscale to as small as 60 × 15 nm2are fabricated and electrically characterized. ON‐/OFF‐ conductance and reset current show weak area dependence when the device is relatively large, and they become proportional to the device area when further scaled down. Two‐layer devices with repeatable switching behavior are achieved. The current study shows the potentials of Ta:SiO2‐based 3D vertical devices for memory and computing applications. It also suggests that doping of the switching layer is an efficient approach to engineer the performance of memristive devices.  more » « less
Award ID(s):
1740248
PAR ID:
10460665
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Electronic Materials
Volume:
5
Issue:
9
ISSN:
2199-160X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Resistive switching devices are promising candidates for the next generation of nonvolatile memory and neuromorphic computing applications. Despite the advantages in retention and on/off ratio, filamentary-based memristors still suffer from challenges, particularly endurance (flash being a benchmark system showing 104to 106 cycles) and uniformity. Here, we use WO3as a complementary metal-oxide semiconductor–compatible switching oxide and demonstrate a proof-of-concept materials design approach to enhance endurance and device-to-device uniformity in WO3-based memristive devices while preserving other performance metrics. These devices show stable resistive switching behavior with >106 cycles, >105-second retention, >10 on/off ratio, and good device-to-device uniformity, without using current compliance. All these metrics are achieved using a one-step pulsed laser deposition process to create self-assembled nanocomposite thin films that have regular guided filaments of ≈100-nanometer pitch, preformed between WO3grains and interspersed smaller Ce2O3grains. 
    more » « less
  2. Abstract Emerging non-volatile memristor-based devices with resistive switching (RS) materials are being widely researched as promising contenders for the next generation of data storage and neuromorphic technologies. Titanium nitride (TiNx) is a common industry-friendly electrode system for RS; however, the precise TiNxproperties required for optimum RS performance is still lacking. Herein, using ion-assisted DC magnetron sputtering, we demonstrate the key importance not only of engineering the TiNxbottom electrodes to be dense, smooth, and conductive, but also understoichiometric in N. With these properties, RS in HfO2-based memristive devices is shown to be optimised for TiN0.96. These devices have switching voltages ≤ ±1 V with promising device-to-device uniformity, endurance, memory window of ~40, and multiple non-volatile intermediate conductance levels. This study highlights the importance of precise tuning of TiNxbottom electrodes to achieve robust performance of oxide resistive switching materials. 
    more » « less
  3. Abstract 2D materials have been of considerable interest as new materials for device applications. Non‐volatile resistive switching applications of MoS2and WS2have been previously demonstrated; however, these applications are dramatically limited by high temperatures and extended times needed for the large‐area synthesis of 2D materials on crystalline substrates. The experimental results demonstrate a one‐step sulfurization method to synthesize MoS2and WS2at 550 °C in 15 min on sapphire wafers. Furthermore, a large area transfer of the synthesized thin films to SiO2/Si substrates is achieved. Following this, MoS2and WS2memristors are fabricated that exhibit stable non‐volatile switching and a satisfactory large on/off current ratio (103–105) with good uniformity. Tuning the sulfurization parameters (temperature and metal precursor thickness) is found to be a straightforward and effective strategy to improve the performance of the memristors. The demonstration of large‐scale MoS2and WS2memristors with a one‐step low‐temperature sulfurization method with simple strategy to tuning can lead to potential applications such as flexible memory and neuromorphic computing. 
    more » « less
  4. The stabilization of the threshold switching characteristics of memristive NbOx is examined as a function of sample growth and device characteristics. Sub-stoichiometric Nb2O5 was deposited via magnetron sputtering and patterned in nanoscale (50×50–170×170nm2) W/Ir/NbOx/TiN devices and microscale (2×2–15×15μm2) crossbar Au/Ru/NbOx/Pt devices. Annealing the nanoscale devices at 700 °C removed the need for electroforming the devices. The smallest nanoscale devices showed a large asymmetry in the IV curves for positive and negative bias that switched to symmetric behavior for the larger and microscale devices. Electroforming the microscale crossbar devices created conducting NbO2 filaments with symmetric IV curves whose behavior did not change as the device area increased. The smallest devices showed the largest threshold voltages and most stable threshold switching. As the nanoscale device area increased, the resistance of the devices scaled with the area as R∝A−1, indicating a crystallized bulk NbO2 device. When the nanoscale device size was comparable to the size of the filaments, the annealed nanoscale devices showed similar electrical responses as the electroformed microscale crossbar devices, indicating filament-like behavior in even annealed devices without electroforming. Finally, the addition of up to 1.8% Ti dopant into the films did not improve or stabilize the threshold switching in the microscale crossbar devices. 
    more » « less
  5. Abstract The characteristic metal–insulator phase transition (MIT) in vanadium dioxide results in nonlinear electrical transport behavior, allowing VO2devices to imitate the complex functions of neurological behavior. Chemical doping is an established method for varying the properties of the MIT, and interstitial dopant boron has been shown to generate a unique dynamic relaxation effect in individual B‐VO2particles. This paper describes the first demonstration of an electrically stimulated B‐VO2proto‐device which manifests a time‐dependent critical transformation temperature and switching voltage derived from the coupling of dopant diffusion dynamics and the metal–insulator transition of VO2. During quasi‐steady current‐driven transitions, the electrical responses of B‐VO2proto‐devices show a step‐by‐step progression through the phase transformation, evidencing domain transformations within individual particles. The dynamic relaxation effect is shown to increase the critical switching voltage by up to 41% (ΔVcrit =0.13 V) and also to increase the resistivity of the M1 phase of B‐VO2by 14%, imbuing a memristive response derived from intrinsic material properties. These observations demonstrate the dynamic relaxation effect in B‐VO2proto‐devices whose electrical transport responses can be adjusted by electronic phase transitions triggered by temperature but also by time as a result of intrinsic dynamics of interstitial dopants. 
    more » « less