skip to main content


Search for: All records

Award ID contains: 1740352

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The superior density of passive analog-grade memristive crossbar circuits enables storing large neural network models directly on specialized neuromorphic chips to avoid costly off-chip communication. To ensure efficient use of such circuits in neuromorphic systems, memristor variations must be substantially lower than those of active memory devices. Here we report a 64 × 64 passive crossbar circuit with ~99% functional nonvolatile metal-oxide memristors. The fabrication technology is based on a foundry-compatible process with etch-down patterning and a low-temperature budget. The achieved <26% coefficient of variance in memristor switching voltages is sufficient for programming a 4K-pixel gray-scale pattern with a <4% relative tuning error on average. Analog properties are also successfully verified via experimental demonstration of a 64 × 10 vector-by-matrix multiplication with an average 1% relative conductance import accuracy to model the MNIST image classification by ex-situ trained single-layer perceptron, and modeling of a large-scale multilayer perceptron classifier based on more advanced conductance tuning algorithm.

     
    more » « less
  2. Abstract The increasing utility of specialized circuits and growing applications of optimization call for the development of efficient hardware accelerator for solving optimization problems. Hopfield neural network is a promising approach for solving combinatorial optimization problems due to the recent demonstrations of efficient mixed-signal implementation based on emerging non-volatile memory devices. Such mixed-signal accelerators also enable very efficient implementation of various annealing techniques, which are essential for finding optimal solutions. Here we propose a “weight annealing” approach, whose main idea is to ease convergence to the global minima by keeping the network close to its ground state. This is achieved by initially setting all synaptic weights to zero, thus ensuring a quick transition of the Hopfield network to its trivial global minima state and then gradually introducing weights during the annealing process. The extensive numerical simulations show that our approach leads to a better, on average, solutions for several representative combinatorial problems compared to prior Hopfield neural network solvers with chaotic or stochastic annealing. As a proof of concept, a 13-node graph partitioning problem and a 7-node maximum-weight independent set problem are solved experimentally using mixed-signal circuits based on, correspondingly, a 20 × 20 analog-grade TiO 2 memristive crossbar and a 12 × 10 eFlash memory array. 
    more » « less
  3. Abstract We first propose an ultra-compact energy-efficient time-domain vector-by-matrix multiplier (VMM) based on commercial 3D-NAND flash memory structure. The proposed 3D-VMM uses a novel resistive successive integrate and re-scaling (RSIR) scheme to eliminate the stringent requirement of a bulky load capacitor which otherwise dominates the area- and energy-landscape of the conventional time-domain VMMs. Our rigorous analysis, performed at the 55 nm technology node, shows that RSIR-3D-VMM achieves a record-breaking area efficiency of ∼0.02 μ m 2 /Byte and the energy efficiency of ∼6 f J/Op for a 500 × 500 4-bit VMM, representing 5× and 1.3× improvements over the previously reported 3D-VMM approach. Moreover, unlike the previous approach, the proposed VMM can be efficiently tailored to work in a smaller current output range. Our second major contribution is the development of 3D-aCortex, a multi-purpose neuromorphic inference processor that utilizes the proposed 3D-VMM block as its core processing unit. Rigorous performance modeling of the 3D-aCortex targeting several state-of-the-art neural network benchmarks has shown that it may provide a record-breaking 30.7 MB mm −2 storage efficiency, 113.3 TOp/J peak energy efficiency, and 10.66 TOp/s computational throughput. The system-level analysis indicates that the gain in the area-efficiency of RSIR leads to a smaller data transfer delay, which compensates for the reduction in the VMM throughput due to an increased input time window. 
    more » « less
  4. null (Ed.)
    When extremely low-energy processing is required, the choice of data representation makes a tremendous difference. Each representation (e.g., frequency domain, residue coded, and log-scale) embodies a different set of tradeoffs based on the algebraic operations that are either easy or hard to perform in that domain. We demonstrate the potential of a novel form of encoding, race logic, in which information is represented as the delay in the arrival of a signal. Under this encoding, the ways in which signal delays interact and interfere with one another define the operation of the system. Observations of the relative delays (for example, the outcome of races between signals) define the output of the computation. Interestingly, completely standard hardware logic elements can be repurposed to this end and the resulting embedded systems have the potential to be extremely energy efficient. To realize this potential in a practical design, we demonstrate two different approaches to the creation of programmable tree-based ensemble classifiers in an extended set of race logic primitives; we explore the trade-offs inherent to their operation across sensor, hardware architecture, and algorithm; and we compare the resulting designs against traditional state-of-the-art hardware techniques. 
    more » « less
  5. null (Ed.)
  6. We propose an extremely dense, energy-efficient mixed-signal vector-by-matrix-multiplication (VMM) circuits based on the existing 3D-NAND flash memory blocks, without any need for their modification. Such compatibility is achieved using a time-domain-encoded VMM design. We have performed rigorous simulations of such a circuit, taking into account non-idealities such as drain-induced barrier lowering, capacitive coupling, charge injection, parasitics, process variations, and noise. Our results, for example, show that the 4-bit VMM of 200-element vectors, using the commercially available 64-layer gate-all-around macaroni-type 3D-NAND memory blocks designed in the 55-nm technology node, may provide an unprecedented area efficiency of 0.14 µm2/byte and energy efficiency of ~11 fJ/Op, including the input/output and other peripheral circuitry overheads. 
    more » « less