skip to main content

Search for: All records

Award ID contains: 1740741

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Networks of coupled oscillators are some of the most studied objects in the theory of dynamical systems. Two important areas of current interest are the study of synchrony in highly disordered systems and the modeling of systems with adaptive network structures. Here, we present a single approach to both of these problems in the form of "KuraNet", a deep-learning-based system of coupled oscillators that can learn to synchronize across a distribution of disordered network conditions. The key feature of the model is the replacement of the traditionally static couplings with a coupling function which can learn optimal interactions within heterogeneous oscillator populations. We apply our approach to the eponymous Kuramoto model and demonstrate how KuraNet can learn data-dependent coupling structures that promote either global or cluster synchrony. For example, we show how KuraNet can be used to empirically explore the conditions of global synchrony in analytically impenetrable models with disordered natural frequencies, external field strengths, and interaction delays. In a sequence of cluster synchrony experiments, we further show how KuraNet can function as a data classifier by synchronizing into coherent assemblies. In all cases, we show how KuraNet can generalize to both new data and new network scales, making it easy to work with small systems and form hypotheses about the thermodynamic limit. Our proposed learning-based approach is broadly applicable to arbitrary dynamical systems with wide-ranging relevance to modeling in physics and systems biology. 
    more » « less
  2. null (Ed.)
    Despite their elegant formulation and lightweight memory cost, neural ordinary differential equations (NODEs) suffer from known representational limitations. In particular, the single flow learned by NODEs cannot express all homeomorphisms from a given data space to itself, and their static weight parameterization restricts the type of functions they can learn compared to discrete architectures with layer-dependent weights. Here, we describe a new module called neurally-controlled ODE (N-CODE) designed to improve the expressivity of NODEs. The parameters of N-CODE modules are dynamic variables governed by a trainable map from initial or current activation state, resulting in forms of open-loop and closed-loop control, respectively. A single module is sufficient for learning a distribution on non-autonomous flows that adaptively drive neural representations. We provide theoretical and empirical evidence that N-CODE circumvents limitations of previous NODEs models and show how increased model expressivity manifests in several supervised and unsupervised learning problems. These favorable empirical results indicate the potential of using data- and activity-dependent plasticity in neural networks across numerous domains. 
    more » « less
  3. null (Ed.)
    Studying the spread of infections is an important tool in limiting or preventing future outbreaks. A first step in understanding disease dynamics is constructing networks that reproduce features of real-world interactions. In this paper, we generate networks that maintain some features of the partial interaction networks that were recorded in an existing diary-based survey at the University of Warwick. To preserve realistic structure in our artificial networks, we use a context-specific approach. In particular, we propose different algorithms for producing larger home, work and social networks. Our networks are able to maintain much of the interaction structure in the original diary-based survey and provide a means of accounting for the interactions of survey participants with non-participants. Simulating a discrete susceptible–infected–recovered model on the full network produces epidemic behaviour which shares characteristics with previous influenza seasons. Our approach allows us to explore how disease transmission and dynamic responses to infection differ depending on interaction context. We find that, while social interactions may be the first to be reduced after influenza infection, limiting work and school encounters may be significantly more effective in controlling the overall severity of the epidemic. 
    more » « less
  4. During the emergence of Data Science as a distinct discipline, discussions of what exactly constitutes Data Science have been a source of contention, with no clear resolution. These disagreements have been exacerbated by the lack of a clear single disciplinary 'parent.' Many early efforts at defining curricula and courses exist, with the EDISON Project's Data Science Framework (EDISON-DSF) from the European Union being the most complete. The EDISON-DSF includes both a Data Science Body of Knowledge (DS-BoK) and Competency Framework (CF-DS). This paper takes a critical look at how EDISON's CF-DS compares to recent work and other published curricular or course materials. We identify areas of strong agreement and disagreement with the framework. Results from the literature analysis provide strong insights into what topics the broader community see as belonging in (or not in) Data Science, both at curricular and course levels. This analysis can provide important guidance for groups working to formalize the discipline and any college or university looking to build their own undergraduate Data Science degree or programs.

    more » « less