The synchronization dynamics for the circadian gene expression in the suprachiasmatic nucleus is investigated using a transcriptional circadian clock gene oscillator model. With global coupling in constant dark (DD) conditions, the model exhibits a one-cluster phase synchronized state, in dim light (dim LL), bistability between one- and two-cluster states and in bright LL, a two-cluster state. The two-cluster phase synchronized state, where some oscillator pairs synchronize in-phase, and some anti-phase, can explain the splitting of the circadian clock, i.e., generation of two bouts of daily activities with certain species, e.g., with hamsters. The one- and two-cluster states can be reached by transferring the animal from DD or bright LL to dim LL, i.e., the circadian synchrony has a memory effect. The stability of the one- and two-cluster states was interpreted analytically by extracting phase models from the ordinary differential equation models. In a modular network with two strongly coupled oscillator populations with weak intragroup coupling, with appropriate initial conditions, one group is synchronized to the one-cluster state and the other group to the two-cluster state, resulting in a weak-chimera state. Computational modeling suggests that the daily rhythms in sleep–wake depend on light intensity acting on bilateral networks of suprachiasmatic nucleus (SCN) oscillators. Addition of a network heterogeneity (coupling between the left and right SCN) allowed the system to exhibit chimera states. The simulations can guide experiments in the circadian rhythm research to explore the effect of light intensity on the complexities of circadian desynchronization.
more »
« less
Kuranet: Systems of coupled oscillators that learn to synchronize
Networks of coupled oscillators are some of the most studied objects in the theory of dynamical systems. Two important areas of current interest are the study of synchrony in highly disordered systems and the modeling of systems with adaptive network structures. Here, we present a single approach to both of these problems in the form of "KuraNet", a deep-learning-based system of coupled oscillators that can learn to synchronize across a distribution of disordered network conditions. The key feature of the model is the replacement of the traditionally static couplings with a coupling function which can learn optimal interactions within heterogeneous oscillator populations. We apply our approach to the eponymous Kuramoto model and demonstrate how KuraNet can learn data-dependent coupling structures that promote either global or cluster synchrony. For example, we show how KuraNet can be used to empirically explore the conditions of global synchrony in analytically impenetrable models with disordered natural frequencies, external field strengths, and interaction delays. In a sequence of cluster synchrony experiments, we further show how KuraNet can function as a data classifier by synchronizing into coherent assemblies. In all cases, we show how KuraNet can generalize to both new data and new network scales, making it easy to work with small systems and form hypotheses about the thermodynamic limit. Our proposed learning-based approach is broadly applicable to arbitrary dynamical systems with wide-ranging relevance to modeling in physics and systems biology.
more »
« less
- Award ID(s):
- 1740741
- PAR ID:
- 10294916
- Date Published:
- Journal Name:
- ArXivorg
- ISSN:
- 2331-8422
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper we study cluster synchronization in a network of Kuramoto oscillators, where groups of oscillators evolve cohesively and at different frequencies from the neigh- boring oscillators. Synchronization is critical in a variety of systems, where it enables complex functionalities and behaviors. Synchronization over networks depends on the oscillators’ dynamics, the interaction topology, and coupling strengths, and the relationship between these different factors can be quite intricate. In this work we formally show that three network properties enable the emergence of cluster synchronization. Specifically, weak inter-cluster connections, strong intra-cluster connections, and sufficiently diverse natural frequencies among oscillators belonging to different groups. Our approach relies on system-theoretic tools, and is validated with numerical studies.more » « less
-
Coupled oscillator networks often display transitions between qualitatively different phase-locked solutions—such as synchrony and rotating wave solutions—following perturbation or parameter variation. In the limit of weak coupling, these transitions can be understood in terms of commonly studied phase approximations. As the coupling strength increases, however, predicting the location and criticality of transition, whether continuous or discontinuous, from the phase dynamics may depend on the order of the phase approximation—or a phase description of the network dynamics that neglects amplitudes may become impossible altogether. Here we analyze synchronization transitions and their criticality systematically for varying coupling strength in theory and experiments with coupled electrochemical oscillators. First, we analyze bifurcations analysis of synchrony and splay states in an abstract phase model and discuss conditions under which synchronization transitions with different criticalities are possible. In particular, we show that such conditions can be understood by considering the relative contributions of higher harmonics to the phase dynamics. Second, we illustrate that transitions with different criticality indeed occur in experimental systems. Third, we highlight that the amplitude dynamics observed in the experiments can be captured in a numerical bifurcation analysis of delay-coupled oscillators. Our results showcase that reduced order phase models may miss important features that one would expect in the dynamics of the full system. Published by the American Physical Society2024more » « less
-
We review the theory of weakly coupled oscillators for smooth systems. We then examine situations where application of the standard theory falls short and illustrate how it can be extended. Specific examples are given to non-smooth systems with applications to the Izhikevich neuron. We then introduce the idea of isostable reduction to explore behaviours that the weak coupling paradigm cannot explain. In an additional example, we show how bifurcations that change the stability of phase-locked solutions in a pair of identical coupled neurons can be understood using the notion of isostable reduction. This article is part of the theme issue ‘Coupling functions: dynamical interaction mechanisms in the physical, biological and social sciences’.more » « less
-
In this paper we study cluster synchronization in networks of oscillators with heterogenous Kuramoto dynamics, where multiple groups of oscillators with identical phases coexist in a connected network. Cluster synchronization is at the basis of several biological and technological processes; yet the underlying mechanisms to enable cluster synchronization of Kuramoto oscillators have remained elusive. In this paper we derive quantitative conditions on the network weights, cluster configuration, and oscillators' natural frequency that ensure asymptotic stability of the cluster synchronization manifold; that is, the ability to recover the desired cluster synchronization configuration following a perturbation of the oscillators' states. Qualitatively, our results show that cluster synchronization is stable when the intra-cluster coupling is sufficiently stronger than the inter-cluster coupling, the natural frequencies of the oscillators in distinct clusters are sufficiently different, or, in the case of two clusters, when the intra-cluster dynamics is homogeneous. We illustrate and validate the effectiveness of our theoretical results via numerical studies.more » « less