Systems of coupled nonlinear oscillators often exhibit states of partial synchrony in which some of the oscillators oscillate coherently while the rest remain incoherent. If such a state emerges spontaneously, in other words, if it cannot be associated with any heterogeneity in the system, it is generally referred to as a chimera state. In planar oscillator arrays, these chimera states can take the form of rotating spiral waves surrounding an incoherent core, resembling those observed in oscillatory or excitable media, and may display complex dynamical behavior. To understand this behavior we study stationary and moving chimera states in planar phase oscillator arrays using a combination of direct numerical simulations and numerical continuation of solutions of the corresponding continuum limit, focusing on the existence and properties of traveling spiral wave chimeras as a function of the system parameters. The oscillators are coupled nonlocally and their frequencies are drawn from a Lorentzian distribution. Two cases are discussed in detail, that of a tophat coupling function and a twoparameter truncated Fourier approximation to this function in Cartesian coordinates. The latter allows semianalytical progress, including determination of stability properties, leading to a classification of possible behaviors of both static and moving chimera states. The transition from stationary to moving chimeras is shown to be accompanied by the appearance of complex filamentary structures within the incoherent spiral wave core representing secondary coherence regions associated with temporal resonances. As the parameters are varied the number of such filaments may grow, a process reflected in a series of folds in the corresponding bifurcation diagram showing the drift speed
 Award ID(s):
 1740741
 NSFPAR ID:
 10294916
 Date Published:
 Journal Name:
 ArXivorg
 ISSN:
 23318422
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract s as a function of the phaselag parameterα . 
Embedding properties of network realizations of dissipative reduced order models Jörn Zimmerling, Mikhail Zaslavsky,Rob Remis, Shasri Moskow, Alexander Mamonov, Murthy Guddati, Vladimir Druskin, and Liliana Borcea Mathematical Sciences Department, Worcester Polytechnic Institute https://www.wpi.edu/people/vdruskin Abstract Realizations of reduced order models of passive SISO or MIMO LTI problems can be transformed to tridiagonal and blocktridiagonal forms, respectively, via dierent modications of the Lanczos algorithm. Generally, such realizations can be interpreted as ladder resistorcapacitorinductor (RCL) networks. They gave rise to network syntheses in the rst half of the 20th century that was at the base of modern electronics design and consecutively to MOR that tremendously impacted many areas of engineering (electrical, mechanical, aerospace, etc.) by enabling ecient compression of the underlining dynamical systems. In his seminal 1950s works Krein realized that in addition to their compressing properties, network realizations can be used to embed the data back into the state space of the underlying continuum problems. In more recent works of the authors Krein's ideas gave rise to socalled nitedierence Gaussian quadrature rules (FDGQR), allowing to approximately map the ROM statespace representation to its full order continuum counterpart on a judicially chosen grid. Thus, the state variables can be accessed directly from the transfer function without solving the full problem and even explicit knowledge of the PDE coecients in the interior, i.e., the FDGQR directly learns" the problem from its transfer function. This embedding property found applications in PDE solvers, inverse problems and unsupervised machine learning. Here we show a generalization of this approach to dissipative PDE problems, e.g., electromagnetic and acoustic wave propagation in lossy dispersive media. Potential applications include solution of inverse scattering problems in dispersive media, such as seismic exploration, radars and sonars. To x the idea, we consider a passive irreducible SISO ROM fn(s) = Xn j=1 yi s + σj , (62) assuming that all complex terms in (62) come in conjugate pairs. We will seek ladder realization of (62) as rjuj + vj − vj−1 = −shˆjuj , uj+1 − uj + ˆrj vj = −shj vj , (63) for j = 0, . . . , n with boundary conditions un+1 = 0, v1 = −1, and 4n real parameters hi, hˆi, ri and rˆi, i = 1, . . . , n, that can be considered, respectively, as the equivalent discrete inductances, capacitors and also primary and dual conductors. Alternatively, they can be viewed as respectively masses, spring stiness, primary and dual dampers of a mechanical string. Reordering variables would bring (63) into tridiagonal form, so from the spectral measure given by (62 ) the coecients of (63) can be obtained via a nonsymmetric Lanczos algorithm written in Jsymmetric form and fn(s) can be equivalently computed as fn(s) = u1. The cases considered in the original FDGQR correspond to either (i) real y, θ or (ii) real y and imaginary θ. Both cases are covered by the Stieltjes theorem, that yields in case (i) real positive h, hˆ and trivial r, rˆ, and in case (ii) real positive h,r and trivial hˆ,rˆ. This result allowed us a simple interpretation of (62) as the staggered nitedierence approximation of the underlying PDE problem [2]. For PDEs in more than one variables (including topologically rich datamanifolds), a nitedierence interpretation is obtained via a MIMO extensions in block form, e.g., [4, 3]. The main diculty of extending this approach to general passive problems is that the Stieltjes theory is no longer applicable. Moreover, the tridiagonal realization of a passive ROM transfer function (62) via the ladder network (63) cannot always be obtained in portHamiltonian form, i.e., the equivalent primary and dual conductors may change sign [1]. 100 Embedding of the Stieltjes problems, e.g., the case (i) was done by mapping h and hˆ into values of acoustic (or electromagnetic) impedance at grid cells, that required a special coordinate stretching (known as travel time coordinate transform) for continuous problems. Likewise, to circumvent possible nonpositivity of conductors for the nonStieltjes case, we introduce an additional complex sdependent coordinate stretching, vanishing as s → ∞ [1]. This stretching applied in the discrete setting induces a diagonal factorization, removes oscillating coecients, and leads to an accurate embedding for moderate variations of the coecients of the continuum problems, i.e., it maps discrete coecients onto the values of their continuum counterparts. Not only does this embedding yields an approximate linear algebraic algorithm for the solution of the inverse problems for dissipative PDEs, it also leads to new insight into the properties of their ROM realizations. We will also discuss another approach to embedding, based on KreinNudelman theory [5], that results in special datadriven adaptive grids. References [1] Borcea, Liliana and Druskin, Vladimir and Zimmerling, Jörn, A reduced order model approach to inverse scattering in lossy layered media, Journal of Scientic Computing, V. 89, N1, pp. 136,2021 [2] Druskin, Vladimir and Knizhnerman, Leonid, Gaussian spectral rules for the threepoint second dierences: I. A twopoint positive denite problem in a semiinnite domain, SIAM Journal on Numerical Analysis, V. 37, N 2, pp.403422, 1999 [3] Druskin, Vladimir and Mamonov, Alexander V and Zaslavsky, Mikhail, Distance preserving model order reduction of graphLaplacians and cluster analysis, Druskin, Vladimir and Mamonov, Alexander V and Zaslavsky, Mikhail, Journal of Scientic Computing, V. 90, N 1, pp 130, 2022 [4] Druskin, Vladimir and Moskow, Shari and Zaslavsky, Mikhail LippmannSchwingerLanczos algorithm for inverse scattering problems, Inverse Problems, V. 37, N. 7, 2021, [5] Mark Adolfovich Nudelman The Krein String and Characteristic Functions of Maximal Dissipative Operators, Journal of Mathematical Sciences, 2004, V 124, pp 49184934 Go back to Plenary Speakers Go back to Speakers Go backmore » « less

This paper introduces a webbased interactive educational platform for 3D/polyhedral graphic statics (PGS) [1]. The Block Research Group (BRG) at ETH Zürich developed a dynamic learning and teaching platform for structural design. This tool is based on traditional graphic statics. It uses interactive 2D drawings to help designers and engineers with all skill levels to understand and utilize the methods [2]. However, polyhedral graphic statics is not easy to learn because of its characteristics in threedimensional. All the existing computational design tools are heavily dependent on the modeling software such as Rhino or the Pythonbased computational framework like Compass [3]. In this research, we start with the procedural approach, developing libraries using JavaScript, Three.js, and WebGL to facilitate the construction by making it independent from any software. This framework is developed based on the mathematical and computational algorithms deriving the global equilibrium of the structure, optimizing the balanced relationship between the external magnitudes and the internal forces, visualizing the dynamic reciprocal polyhedral diagrams with corresponding topological data. This instant opensource application and the visualization interface provide a more operative platform for students, educators, practicers, and designers in an interactive manner, allowing them to learn not only the topological relationship but also to deepen their knowledge and understanding of structures in the steps for the construction of the form and force diagrams and analyze it. In the simplified singlenode example, the multistep geometric procedures intuitively illustrate 3D structural reciprocity concepts. With the intuitive control panel, the user can move the constraint point’s location through the inserted gumball function, the force direction of the form diagram will be dynamically changed from compressiononly to tension and compression combined. Users can also explore and design innovative, efficient spatial structures with changeable boundary conditions and constraints through realtime manipulating both force distribution and geometric form, such as adding the number of supports or subdividing the global equilibrium in the force diagram. Eventually, there is an option to export the satisfying geometry as a suitable format to share with other fabrication tools. As the online educational environment with different types of geometric examples, it is valuable to use graphical approaches to teach the structural form in an exploratory manner.more » « less

The development of datainformed predictive models for dynamical systems is of widespread interest in many disciplines. We present a unifying framework for blending mechanistic and machinelearning approaches to identify dynamical systems from noisily and partially observed data. We compare pure datadriven learning with hybrid models which incorporate imperfect domain knowledge, referring to the discrepancy between an assumed truth model and the imperfect mechanistic model as model error. Our formulation is agnostic to the chosen machine learning model, is presented in both continuous and discretetime settings, and is compatible both with model errors that exhibit substantial memory and errors that are memoryless. First, we study memoryless linear (w.r.t. parametricdependence) model error from a learning theory perspective, defining excess risk and generalization error. For ergodic continuoustime systems, we prove that both excess risk and generalization error are bounded above by terms that diminish with the squareroot of T T , the timeinterval over which training data is specified. Secondly, we study scenarios that benefit from modeling with memory, proving universal approximation theorems for two classes of continuoustime recurrent neural networks (RNNs): both can learn memorydependent model error, assuming that it is governed by a finitedimensional hidden variable and that, together, the observed and hidden variables form a continuoustime Markovian system. In addition, we connect one class of RNNs to reservoir computing, thereby relating learning of memorydependent error to recent work on supervised learning between Banach spaces using random features. Numerical results are presented (Lorenz ’63, Lorenz ’96 Multiscale systems) to compare purely datadriven and hybrid approaches, finding hybrid methods less datahungry and more parametrically efficient. We also find that, while a continuoustime framing allows for robustness to irregular sampling and desirable domain interpretability, a discretetime framing can provide similar or better predictive performance, especially when data are undersampled and the vector field defining the true dynamics cannot be identified. Finally, we demonstrate numerically how data assimilation can be leveraged to learn hidden dynamics from noisy, partiallyobserved data, and illustrate challenges in representing memory by this approach, and in the training of such models.more » « less

Abstract Coupled climate simulations that span several hundred years cannot be run at a high‐enough spatial resolution to resolve mesoscale ocean dynamics. Recently, several studies have considered Deep Learning to parameterize subgrid forcing within macroscale ocean equations using data from ocean‐only simulations with idealized geometry. We present a stochastic Deep Learning parameterization that is trained on data generated by CM2.6, a high‐resolution state‐of‐the‐art coupled climate model. We train a Convolutional Neural Network for the subgrid momentum forcing using macroscale surface velocities from a few selected subdomains with different dynamical regimes. At each location of the coarse grid, rather than predicting a single number for the subgrid momentum forcing, we predict both the mean and standard deviation of a Gaussian probability distribution. This approach requires training our neural network to minimize a negative log‐likelihood loss function rather than the Mean Square Error, which has been the standard in applications of Deep Learning to the problem of parameterizations. Each estimate of the conditional mean subgrid forcing is thus associated with an uncertainty estimate–the standard deviation—which will form the basis for a stochastic subgrid parameterization. Offline tests show that our parameterization generalizes well to the global oceans and a climate with increased
levels without further training. We then implement our learned stochastic parameterization in an eddy‐permitting idealized shallow water model. The implementation is stable and improves some statistics of the flow. Our work demonstrates the potential of combining Deep Learning tools with a probabilistic approach in parameterizing unresolved ocean dynamics.