skip to main content


Search for: All records

Award ID contains: 1741197

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Identifying novel drug-target interactions is a critical and rate-limiting step in drug discovery. While deep learning models have been proposed to accelerate the identification process, here we show that state-of-the-art models fail to generalize to novel (i.e., never-before-seen) structures. We unveil the mechanisms responsible for this shortcoming, demonstrating how models rely on shortcuts that leverage the topology of the protein-ligand bipartite network, rather than learning the node features. Here we introduce AI-Bind, a pipeline that combines network-based sampling strategies with unsupervised pre-training to improve binding predictions for novel proteins and ligands. We validate AI-Bind predictions via docking simulations and comparison with recent experimental evidence, and step up the process of interpreting machine learning prediction of protein-ligand binding by identifying potential active binding sites on the amino acid sequence. AI-Bind is a high-throughput approach to identify drug-target combinations with the potential of becoming a powerful tool in drug discovery. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. null (Ed.)
  3. Graph embeddings have been tremendously successful at producing node representations that are discriminative for downstream tasks. In this paper, we study the problem of graph transfer learning: given two graphs and labels in the nodes of the first graph, we wish to predict the labels on the second graph. We propose a tractable, noncombinatorial method for solving the graph transfer learning problem by combining classification and embedding losses with a continuous, convex penalty motivated by tractable graph distances. We demonstrate that our method successfully predicts labels across graphs with almost perfect accuracy; in the same scenarios, training embeddings through standard methods leads to predictions that are no better than random. 
    more » « less
  4. The mean squared error loss is widely used in many applications, including auto-encoders, multi-target regression, and matrix factorization, to name a few. Despite computational advantages due to its differentiability, it is not robust to outliers. In contrast, ℓ𝑝 norms are known to be robust, but cannot be optimized via, e.g., stochastic gradient descent, as they are non-differentiable. We propose an algorithm inspired by so-called model-based optimization (MBO), which replaces a non-convex objective with a convex model function and alternates between optimizing the model function and updating the solution. We apply this to robust regression, proposing SADM, a stochastic variant of the Online Alternating Direction Method of Multipliers (OADM) to solve the inner optimization in MBO. We show that SADM converges with the rate 𝑂(log𝑇/𝑇) . Finally, we demonstrate experimentally (a) the robustness of ℓ𝑝 norms to outliers and (b) the efficiency of our proposed model-based algorithms in comparison with gradient methods on autoencoders and multi-target regression. 
    more » « less
  5. Abstract Graph embedding seeks to build a low-dimensional representation of a graph $G$. This low-dimensional representation is then used for various downstream tasks. One popular approach is Laplacian Eigenmaps (LE), which constructs a graph embedding based on the spectral properties of the Laplacian matrix of $G$. The intuition behind it, and many other embedding techniques, is that the embedding of a graph must respect node similarity: similar nodes must have embeddings that are close to one another. Here, we dispose of this distance-minimization assumption. Instead, we use the Laplacian matrix to find an embedding with geometric properties instead of spectral ones, by leveraging the so-called simplex geometry of $G$. We introduce a new approach, Geometric Laplacian Eigenmap Embedding, and demonstrate that it outperforms various other techniques (including LE) in the tasks of graph reconstruction and link prediction. 
    more » « less
  6. null (Ed.)