skip to main content

Search for: All records

Award ID contains: 1741345

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Natural disasters can have devastating consequences for communities, causing loss of life and significant economic damage. To mitigate these impacts, it is crucial to quickly and accurately identify situational awareness and actionable information useful for disaster relief and response organizations. In this paper, we study the use of advanced transformer and contrastive learning models for disaster image classification in a humanitarian context, with focus on state-of-the-art pre-trained vision transformers such as ViT, CSWin and a state-of-the-art pre-trained contrastive learning model, CLIP. We evaluate the performance of these models across various disaster scenarios, including in-domain and cross-domain settings, as well as few- shot learning and zero-shot learning settings. Our results show that the CLIP model outperforms the two transformer models (ViT and CSWin) and also ConvNeXts, a competitive CNN-based model resembling transformers, in all the settings. By improving the performance of disaster image classification, our work can contribute to the goal of reducing the number of deaths and economic losses caused by disasters, as well as helping to decrease the number of people affected by these events. 
    more » « less
    Free, publicly-accessible full text available October 9, 2024
  2. Radianti, Jaziar ; Dokas, Ioannis ; Lalone, Nicolas ; Khazanchi, Deepak (Ed.)
    The shared real-time information about natural disasters on social media platforms like Twitter and Facebook plays a critical role in informing volunteers, emergency managers, and response organizations. However, supervised learning models for monitoring disaster events require large amounts of annotated data, making them unrealistic for real-time use in disaster events. To address this challenge, we present a fine-grained disaster tweet classification model under the semi-supervised, few-shot learning setting where only a small number of annotated data is required. Our model, CrisisMatch, effectively classifies tweets into fine-grained classes of interest using few labeled data and large amounts of unlabeled data, mimicking the early stage of a disaster. Through integrating effective semi-supervised learning ideas and incorporating TextMixUp, CrisisMatch achieves performance improvement on two disaster datasets of 11.2% on average. Further analyses are also provided for the influence of the number of labeled data and out-of-domain results. 
    more » « less
    Free, publicly-accessible full text available May 28, 2024
  3. Effectively filtering and categorizing the large volume of user-generated content on social media during disaster events can help emergency management and disaster response prioritize their resources. Deep learning approaches, including recurrent neural networks and transformer-based models, have been previously used for this purpose. Capsule Neural Networks (CapsNets), initially proposed for image classification, have been proven to be useful for text analysis as well. However, to the best of our knowledge, CapsNets have not been used for classifying crisis-related messages, and have not been extensively compared with state-of-the-art transformer-based models, such as BERT. Therefore, in this study, we performed a thorough comparison between CapsNet models, state-of-the-art BERT models and two popular recurrent neural network models that have been successfully used for tweet classification, specifically, LSTM and Bi-LSTM models, on the task of classifying crisis tweets both in terms of their informativeness (binary classification), as well as their humanitarian content (multi-class classification). For this purpose, we used several benchmark datasets for crisis tweet classification, namely CrisisBench, CrisisNLP and CrisisLex. Experimental results show that the performance of the CapsNet models is on a par with that of LSTM and Bi-LSTM models for all metrics considered, while the performance obtained with BERT models have surpassed the performance of the other three models across different datasets and classes for both classification tasks, and thus BERT could be considered the best overall model for classifying crisis tweets. 
    more » « less
  4. During natural disasters, people often use social media platforms, such as Twitter, to post information about casualties and damage produced by disasters. This information can help relief authorities gain situational awareness in nearly real time, and enable them to quickly distribute resources where most needed. However, annotating data for this purpose can be burdensome, subjective and expensive. In this paper, we investigate how to leverage the copious amounts of unlabeled data generated on social media by disaster eyewitnesses and affected individuals during disaster events. To this end, we propose a semi-supervised learning approach to improve the performance of neural models on several multimodal disaster tweet classification tasks. Our approach shows significant improvements, obtaining up to 7.7% improvements in F-1 in low-data regimes and 1.9% when using the entire training data. We make our code and data publicly available at 
    more » « less
  5. null (Ed.)
  6. null (Ed.)