skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1741677

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Recently, additive manufacturing (AM) fabrications are commonly applied to produce acoustic metamaterials or phononic crystals (PnCs) as tools for complex geometrical designs. However, the material properties of those additive manufactured materials are less involved in the core portion of those PnC designs. Here we report a purely materials-driven, temperature switchable PnC in which Bragg gaps appear or vanish as the lattice medium toggles between liquid water and solid ice. Six widely used AM polymers were acoustically characterized, where stereolithography (SLA) resins showed an impedance mismatch of ≈50% with water but <1% with ice, whereas inkjet agar gel exhibited the opposite trend. A 10 × 10 SLA resin PnC therefore displayed >20 dB on/off contrast at 145 kHz and around 300 kHz when cycled across 0 °C, confirmed experimentally and with plane wave and simulation models. Unlike previous thermally tuned PnCs that depend on volumetric swelling or liquid metal infiltration, the present approach preserves geometry, requires no external actuators and operates with sub 1 °C stability. This simple, robust strategy lays the foundation for band pass filters, steerable lenses and non-reciprocal acoustic circuits that can be frozen or thawed on demand. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Abstract The acoustic response of defect‐based acoustic interferometer‐like designs, known as Coupled Resonator Acoustic Waveguides (CRAWs), in 2D phononic crystals (PnCs) is reported. The PnC is composed of steel cylinders arranged in a square lattice within a water matrix with defects induced by selectively removing cylinders to create Mach‐Zehnder‐like (MZ) defect‐based interferometers. Two defect‐based acoustic interferometers of MZ‐type are fabricated, one with arms oriented horizontally and another one with arms oriented diagonally, and their transmission features are experimentally characterized using ultrasonic spectroscopy. The experimental data are compared with finite element method (FEM) simulations and with tight‐binding (TB) calculations in which each defect is treated as a resonator coupled to its neighboring ones. Significantly, the results exhibit excellent agreement indicating the reliability of the proposed approach. This comprehensive match is of paramount importance for accurately predicting and optimizing resonant modes supported by defect arrays, thus enabling the tailoring of phononic structures and defect‐based waveguides to meet specific requirements. This successful implementation of FEM and TB calculations in investigating CRAWs systems within PnCs paves the way for designing advanced acoustic devices with desired functionalities for various practical applications, demonstrating the application of solid‐state electronics principles to underwater acoustic devices description. 
    more » « less
  3. We demonstrate analytically, numerically, and experimentally that a 2D supercrystal (SC)—an elastic structure of solid rods with two distinct spatial periods embedded in a viscous fluid—exhibits very high acoustic absorption. Smaller diameter rods arranged in a 2D lattice with a smaller period serve as an effective medium with high viscosity for a set of larger rods arranged in a lattice of much larger period. The enhancement of acoustic absorption is due to strong viscous friction within a narrow layer with high gradients of velocity formed around each scatterer. The SC as a whole is considered in the homogenization limit of frequencies where it behaves as a metafluid with an effective speed of sound and effective viscosity. Analytical results for the effective parameters are calculated for any Bravais lattices and arbitrary cross-sections of the rods. Experimental measurements of acoustic absorption in a supercrystal with hexagonal lattices for both types of rods are in a good agreement with analytical and numerical results. Published by the American Physical Society2024 
    more » « less
  4. We study two-state (dichotomous, telegraph) random ergodic continuous-time processes with dynamics depending on their past. We take into account the history of the process in an explicit form by introducing integral nonlocal memory term into conditional probability function. We start from an expression for the conditional transition probability function describing additive multistep binary random chain and show that the telegraph processes can be considered as continuous-time interpolations of discrete-time dichotomous random sequences. An equation involving the memory function and the two-point correlation function of the telegraph process is analytically obtained. This integral equation defines the correlation properties of the processes with given memory functions. It also serves as a tool for solving the inverse problem, namely for generation of a telegraph process with a prescribed pair correlation function. We obtain analytically the correlation functions of the telegraph processes with two exactly solvable examples of memory functions and support these results by numerical simulations of the corresponding telegraph processes. Published by the American Physical Society2024 
    more » « less
  5. Abstract Linear spreading of a wave packet or a Gaussian beam is a fundamental effect known in evolution of quantum state and propagation of optical/acoustic beams. The rate of spreading is determined by the diffraction coefficientDwhich is proportional to the curvature of the isofrequency surface. Here, we analyzed dispersion of sound in a solid-fluid layered structure and found a flex point on the isofrequency curve whereDvanishes for given direction of propagation and frequency. Nonspreading propagation is experimentally observed in a water steel lattice of 75 periods (~1 meter long) and occurs in the regime of anomalous dispersion and strong acoustic anisotropy when the effective mass along periodicity is close to zero. Under these conditions the incoming beam experiences negative refraction of phase velocity leading to backward wave propagation. The observed effect is explained using a complete set of dynamical equations and our effective medium theory. 
    more » « less
  6. Abstract A coupled resonant acoustic waveguide (CRAW) in a phononic crystal (PnC) was engineered to manipulate the propagation of ultrasonic waves within a conventional phononic bandgap for wavelength division multiplexing. The PnC device included two, forked, distinct CRAW waveguide channels that exhibited strong frequency and mode selectivity. Each branch was composed of cavities of differing volumes, with each giving rise to deep and shallow ‘impurity’ states. These states were utilized to select frequency windows where transmission along the channels was suppressed distinctly for each channel. Though completely a linear system, the mode sensitivity of each CRAW waveguide channel produced apparent nonlinear power dependence along each branch. Nonlinearity in the system arises from the combination of the mode sensitivity of each CRAW channel and small variations in the shape of the incident wavefront as a function of input power. The all-acoustic effect was then leveraged to realize an ultrasonic, spatial signal modulator, and logic element operating at 398 and 450 kHz using input power. 
    more » « less
  7. A spatially periodic structure of heterogeneous elastic rods that periodically oscillate along their axes is proposed as a time-modulated phononic crystal. Each rod is a bi-material cylinder, consisting of periodically distributed slices with significantly different elastic properties. The rods are imbedded in an elastic matrix. Using a plane wave expansion, it is shown that the dispersion equation for sound waves is obtained from the solutions of a quadratic eigenvalue problem over the eigenfrequency ω. The coefficients of the corresponding quadratic polynomial are represented by infinite matrices defined in the space spanned by the reciprocal lattice vectors, where elements depend on the velocity of translation motion of the rods and Bloch vector k. The calculated band structure exhibits both ω and k bandgaps. If a frequency gap overlaps with a momentum gap, a mixed gap is formed. Within a mixed gap, ω and k acquire imaginary parts. A method of analysis of the dispersion equation in complex ω−k space is proposed. As a result of the high elastic contrast between the materials in the bi-material rods, a substantial depth of modulation is achieved, leading to a large gap to midgap ratio for the frequency, momentum, and mixed bandgaps. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  8. Free, publicly-accessible full text available March 1, 2026
  9. Free, publicly-accessible full text available February 1, 2026
  10. Propagation and attenuation of sound through a layered phononic crystal with viscous constituents is theoretically studied. The Navier–Stokes equation with appropriate boundary conditions is solved and the dispersion relation for sound is obtained for a periodic layered heterogeneous structure where at least one of the constituents is a viscous fluid. Simplified dispersion equations are obtained when the other component of the unit is either elastic solid, viscous fluid, or ideal fluid. The limit of low frequencies when periodic structure homogenizes and the frequencies close to the band edge when propagating Bloch wave becomes a standing wave are considered and enhanced viscous dissipation is calculated. Angular dependence of the attenuation coefficient is analyzed. It is shown that transition from dissipation in the bulk to dissipation in a narrow boundary layer occurs in the region of angles close to normal incidence. Enormously high dissipation is predicted for solid–fluid structure in the region of angles where transmission practically vanishes due to appearance of so-called “transmission zeros,” according to El Hassouani, El Boudouti, Djafari-Rouhani, and Aynaou [Phys. Rev. B 78, 174306 (2008)]. For the case when the unit cell contains a narrow layer of high viscosity fluid, the anomaly related to acoustic manifestation of Borrmann effect is explained. 
    more » « less