skip to main content

Title: Long-range nonspreading propagation of sound beam through periodic layered structure

Linear spreading of a wave packet or a Gaussian beam is a fundamental effect known in evolution of quantum state and propagation of optical/acoustic beams. The rate of spreading is determined by the diffraction coefficientDwhich is proportional to the curvature of the isofrequency surface. Here, we analyzed dispersion of sound in a solid-fluid layered structure and found a flex point on the isofrequency curve whereDvanishes for given direction of propagation and frequency. Nonspreading propagation is experimentally observed in a water steel lattice of 75 periods (~1 meter long) and occurs in the regime of anomalous dispersion and strong acoustic anisotropy when the effective mass along periodicity is close to zero. Under these conditions the incoming beam experiences negative refraction of phase velocity leading to backward wave propagation. The observed effect is explained using a complete set of dynamical equations and our effective medium theory.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Physics
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Lithospheric seismic anisotropy illuminates mid‐ocean ridge dynamics and the thermal evolution of oceanic plates. We utilize short‐period (5–7.5 s) ambient‐noise surface waves and 15‐ to 150‐s Rayleigh waves measured across the NoMelt ocean‐bottom array to invert for the complete radial and azimuthal anisotropy in the upper ∼35 km of ∼70‐Ma Pacific lithospheric mantle, and azimuthal anisotropy through the underlying asthenosphere. Strong azimuthal variations in Rayleigh‐ and Love‐wave velocity are observed, including the first clearly measured Love‐wave 2θand 4θvariations. Inversion of averaged dispersion requires radial anisotropy in the shallow mantle (2‐3%) and the lower crust (4‐5%), with horizontal velocities (VSH) faster than vertical velocities (VSV). Azimuthal anisotropy is strong in the mantle, with 4.5–6% 2θvariation inVSVwith fast propagation parallel to the fossil‐spreading direction (FSD), and 2–2.5% 4θvariation inVSHwith a fast direction 45° from FSD. The relative behavior of 2θ, 4θ, and radial anisotropy in the mantle are consistent with ophiolite petrofabrics, linking outcrop and surface‐wave length scales.VSVremains fast parallel to FSD to ∼80 km depth where the direction changes, suggesting spreading‐dominated deformation at the ridge. The transition at ∼80 km perhaps marks the dehydration boundary and base of the lithosphere. Azimuthal anisotropy strength increases from the Moho to ∼30 km depth, consistent with flow models of passive upwelling at the ridge. Strong azimuthal anisotropy suggests extremely coherent olivine fabric. Weaker radial anisotropy implies slightly nonhorizontal fabric or the presence of alternative (so‐called E‐type) peridotite fabric. Presence of radial anisotropy in the crust suggests subhorizontal layering and/or shearing during crustal accretion.

    more » « less
  2. Abstract

    In situ observations from a 19‐month deployment of current‐ and pressure‐sensor equipped inverted echo sounders (CPIESs) along and across the Gulf Stream near Cape Hatteras capture spatial and temporal variability where this western boundary current separates from the continental margin. Regional hydrographic casts and two temperature cross‐sections spanning the Gulf Stream southeast of Cape Hatteras are used with the CPIESs' records of acoustic travel time to infer changes in thermocline depthDTand Gulf Stream position. Wave‐like Gulf Stream meanders are observed where the Stream approaches the separation location with periods less than 15 days, wavelengths less than 500‐km, and phase speeds between 40 and 70 km d−1. Though meander amplitudes typically decrease by ∼30% on the final approach to Cape Hatteras, some signals are still coherent across the Gulf Stream separation location. Temporal variability in meander intensity may be related to the Loop Current ∼1,400 km upstream. Mesoscale variability is strongest downstream of the separation location where Gulf Stream position is no longer constrained by the steep continental slope. Low frequency transport changes in the Florida Straits are correlated with sea‐surface height gradients along the entire South Atlantic Bight (SAB) and withDTinferred at the CPIES sites. The correlations withDTare likely due to coherent transport anomalies in the Gulf Stream approaching the separation location, which then drive Gulf Stream position changes downstream of the separation location. The patterns of coherent transport anomalies may reflect large‐scale atmospheric forcing patterns or rapid equatorward propagation of barotropic signals along the SAB.

    more » « less
  3. null (Ed.)
    An acoustic metamaterial superlattice is used for the spatial and spectral deconvolution of a broadband acoustic pulse into narrowband signals with different central frequencies. The operating frequency range is located on the second transmission band of the superlattice. The decomposition of the broadband pulse was achieved by the frequency-dependent refraction angle in the superlattice. The refracted angle within the acoustic superlattice was larger at higher operating frequency and verified by numerical calculated and experimental mapped sound fields between the layers. The spatial dispersion and the spectral decomposition of a broadband pulse were studied using lateral position-dependent frequency spectra experimentally with and without the superlattice structure along the direction of the propagating acoustic wave. In the absence of the superlattice, the acoustic propagation was influenced by the usual divergence of the beam, and the frequency spectrum was unaffected. The decomposition of the broadband wave in the superlattice’s presence was measured by two-dimensional spatial mapping of the acoustic spectra along the superlattice’s in-plane direction to characterize the propagation of the beam through the crystal. About 80% of the frequency range of the second transmission band showed exceptional performance on decomposition. 
    more » « less
  4. SUMMARY Ocean bottom distributed acoustic sensing (OBDAS) is emerging as a new measurement method providing dense, high-fidelity and broad-band seismic observations from fibre-optic cables deployed offshore. In this study, we focus on 35.7 km of a linear telecommunication cable located offshore the Sanriku region, Japan, and apply seismic interferometry to obtain a high-resolution 2-D shear wave velocity (VS) model below the cable. We first show that the processing steps applied to 13 d of continuous data prior to computing cross-correlation functions (CCFs) impact the modal content of surface waves. Continuous data pre-processed with 1-bit normalization allow us to retrieve dispersion images with high Scholte-wave energy between 0.5 and 5 Hz, whereas spatial aliasing dominates dispersion images above 3 Hz for non-1-bit CCFs. Moreover, the number of receiver channels considered to compute dispersion images also greatly affects the resolution of extracted surface-wave modes. To better understand the remarkably rich modal nature of OBDAS data (i.e. up to 30 higher modes in some regions), we simulate Scholte-wave dispersion curves for stepwise linear VS gradient media. For soft marine sediments, simulations confirm that a large number of modes can be generated in gradient media. Based on pre-processing and theoretical considerations, we extract surface wave dispersion curves from 1-bit CCFs spanning over 400 channels (i.e. ∼2 km) along the array and invert them to image the subsurface. The 2-D velocity profile generally exhibits slow shear wave velocities near the ocean floor that gradually increase with depth. Lateral variations are also observed. Flat bathymetry regions, where sediments tend to accumulate, reveal a larger number of Scholte-wave modes and lower shallow velocity layers than regions with steeper bathymetry. We also compare and discuss the velocity model with that from a previous study and finally discuss the combined effect of bathymetry and shallow VS layers on earthquake wavefields. Our results provide new constraints on the shallow submarine structure in the area and further demonstrate the potential of OBDAS for high-resolution offshore geophysical prospecting. 
    more » « less
  5. null (Ed.)
    Phononic crystals have the ability to manipulate the propagation of elastic waves in solids by generating unique dispersion characteristics. They can modify the conventional behavior of wave spreading in isotropic materials, known as attenuation, which negatively influences the ability of acoustic emission method to detect active defects in long-range, pipe-like structures. In this study, pipe geometry is reconfigured by adding gradient-index (GRIN) phononic crystal lens to improve the propagation distance of waves released by active defects such as crack growth and leak. The sensing element is designed to form a ring around the pipe circumference to capture the plane wave with the improved amplitude. The GRIN lens is designed by a special gradient-index profile with varying height stubs adhesively bonded to the pipe surface. The performance of GRIN lens for improving the amplitude of localized sources is demonstrated with finite element numerical model using multiphysics software. Experiments are conducted using pencil lead break simulating crack growth, as well as an orifice with pressured pipe simulating leak. The amplitude of the burst-type signal approximately doubles on average, validating the numerical findings. Hence, the axial distance between sensors can be increased proportionally in the passive sensing of defects in pipe-like geometries. 
    more » « less