skip to main content

Search for: All records

Award ID contains: 1744471

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Bias in decisions made by modern software is becoming a common and serious problem. We present Themis, an automated test suite generator to measure two types of discrimination, including causal relationships between sensitive inputs and program behavior. We explain how Themis can measure discrimination and aid its debugging, describe a set of optimizations Themis uses to reduce test suite size, and demonstrate Themis' effectiveness on open-source software. Themis is open-source and all our evaluation data are available at See a video of Themis in action:
  2. A goal of software engineering research is advancing software quality and the success of the software engineering process. However, while recent studies have demonstrated a new kind of defect in software related to its ability to operate in fair and unbiased manner, software engineering has not yet wholeheartedly tackled these new kinds of defects, thus leaving software vulnerable. This paper outlines a vision for how software engineering research can help reduce fairness defects and represents a call to action by the software engineering research community to reify that vision. Modern software is riddled with examples of biased behavior, from automatedmore »translation injecting gender stereotypes, to vision systems failing to see faces of certain races, to the US criminal justice system relying on biased computational assessments of crime recidivism. While systems may learn bias from biased data, bias can also emerge from ambiguous or incomplete requirement specification, poor design, implementation bugs, and unintended component interactions. We argue that software fairness is analogous to software quality, and that numerous software engineering challenges in the areas of requirements, specification, design, testing, and verification need to be tackled to solve this problem.« less
  3. System configuration languages provide powerful abstractions that simplify managing large-scale, networked systems. Thousands of organizations now use configuration languages, such as Puppet. However, specifications written in configuration languages can have bugs and the shell remains the simplest way to debug a misconfigured system. Unfortunately, it is unsafe to use the shell to fix problems when a system configuration language is in use: a fix applied from the shell may cause the system to drift from the state specified by the configuration language. Thus, despite their advantages, configuration languages force system administrators to give up the simplicity and familiarity of themore »shell. This paper presents a synthesis-based technique that allows administrators to use configuration languages and the shell in harmony. Administrators can fix errors using the shell and the technique automatically repairs the higher-level specification written in the configuration language. The approach (1) produces repairs that are consistent with the fix made using the shell; (2) produces repairs that are maintainable by minimizing edits made to the original specification; (3) ranks and presents multiple repairs when relevant; and (4) supports all shells the administrator may wish to use. We implement our technique for Puppet, a widely used system configuration language, and evaluate it on a suite of benchmarks under 42 repair scenarios. The top-ranked repair is selected by humans 76% of the time and the human-equivalent repair is ranked 1.31 on average.« less
  4. This paper defines the notions of software fairness and discrimination and develops a testing-based method for measuring if and how much software discriminates. Specifically, the paper focuses on measuring causality in discriminatory behavior. Modern software contributes to important societal decisions and evidence of software discrimination has been found in systems that recommend criminal sentences, grant access to financial loans and products, and determine who is allowed to participate in promotions and receive services. Our approach, Themis, measures discrimination in software by generating efficient, discrimination-testing test suites. Given a schema describing valid system inputs, Themis generates discrimination tests automatically and, notably,more »does not require an oracle. We evaluate Themis on 20 software systems, 12 of which come from prior work with explicit focus on avoiding discrimination. We find that (1) Themis is effective at discovering software discrimination, (2) state-of-the-art techniques for removing discrimination from algorithms fail in many situations, at times discriminating against as much as 98% of an input subdomain, (3) Themis optimizations are effective at producing efficient test suites for measuring discrimination, and (4) Themis is more efficient on systems that exhibit more discrimination. We thus demonstrate that fairness testing is a critical aspect of the software development cycle in domains with possible discrimination and provide initial tools for measuring software discrimination.« less