skip to main content


Search for: All records

Award ID contains: 1744562

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Determining the injection of glacial meltwater into polar oceans is crucial for quantifying the climate system response to ice sheet mass loss. However, meltwater is poorly observed and its pathways poorly known, especially in winter. Here we present winter meltwater distribution near Pine Island Glacier using data collected by tagged seals, revealing a highly variable meltwater distribution with two meltwater-rich layers in the upper 250 m and at around 450 m, connected by scattered meltwater-rich columns. We show that the hydrographic signature of meltwater is clearest in winter, when its presence can be unambiguously mapped. We argue that the buoyant meltwater provides near-surface heat that helps to maintain polynyas close to ice shelves. The meltwater feedback onto polynyas and air-sea heat fluxes demonstrates that although the processes determining the distribution of meltwater are small-scale, they are important to represent in Earth system models.

     
    more » « less
  2. null (Ed.)
    In situ sensors for environmental chemistry promise more thorough observations, which are necessary for high confidence predictions in earth systems science. However, these can be a challenge to interpret because the sensors are strongly influenced by temperature, humidity, pressure, or other secondary environmental conditions that are not of direct interest. We present a comparison of two statistical learning methods—a generalized additive model and a long short-term memory neural network model for bias correction of in situ sensor data. We discuss their performance and tradeoffs when the two bias correction methods are applied to data from submersible and shipboard mass spectrometers. Both instruments measure the most abundant gases dissolved in water and can be used to reconstruct biochemical metabolisms, including those that regulate atmospheric carbon dioxide. Both models demonstrate a high degree of skill at correcting for instrument bias using correlated environmental measurements; the difference in their respective performance is less than 1% in terms of root mean squared error. Overall, the long short-term memory bias correction produced an error of 5% for O 2 and 8.5% for CO 2 when compared against independent membrane DO and laser spectrometer instruments. This represents a predictive accuracy of 92–95% for both gases. It is apparent that the most important factor in a skillful bias correction is the measurement of the secondary environmental conditions that are likely to correlate with the instrument bias. These statistical learning methods are extremely flexible and permit the inclusion of nearly an infinite number of correlates in finding the best bias correction solution. 
    more » « less
  3. Abstract The Ross Sea is known for showing the greatest sea-ice increase, as observed globally, particularly from 1979 to 2015. However, corresponding changes in sea-ice thickness and production in the Ross Sea are not known, nor how these changes have impacted water masses, carbon fluxes, biogeochemical processes and availability of micronutrients. The PIPERS project sought to address these questions during an autumn ship campaign in 2017 and two spring airborne campaigns in 2016 and 2017. PIPERS used a multidisciplinary approach of manned and autonomous platforms to study the coupled air/ice/ocean/biogeochemical interactions during autumn and related those to spring conditions. Unexpectedly, the Ross Sea experienced record low sea ice in spring 2016 and autumn 2017. The delayed ice advance in 2017 contributed to (1) increased ice production and export in coastal polynyas, (2) thinner snow and ice cover in the central pack, (3) lower sea-ice Chl- a burdens and differences in sympagic communities, (4) sustained ocean heat flux delaying ice thickening and (5) a melting, anomalously southward ice edge persisting into winter. Despite these impacts, airborne observations in spring 2017 suggest that winter ice production over the continental shelf was likely not anomalous. 
    more » « less
  4. null (Ed.)
    Abstract. Katabatic winds in coastal polynyas expose the ocean to extreme heat loss, causing intense sea ice production and dense water formation around Antarctica throughout autumn and winter. The advancing sea ice pack, combined with high winds and low temperatures, has limited surface oceanobservations of polynyas in winter, thereby impeding new insights into theevolution of these ice factories through the dark austral months. Here, wedescribe oceanic observations during multiple katabatic wind events duringMay 2017 in the Terra Nova Bay and Ross Sea polynyas. Wind speeds regularlyexceeded 20 m s−1, air temperatures were below −25 ∘C, and the oceanic mixed layer extended to 600 m. During these events, conductivity–temperature–depth (CTD)profiles revealed bulges of warm, salty water directly beneath the oceansurface and extending downwards tens of meters. These profiles reflect latent heat and salt release during unconsolidated frazil ice production, driven by atmospheric heat loss, a process that has rarely if ever been observed outside the laboratory. A simple salt budget suggests these anomalies reflect in situ frazil ice concentration that ranges from 13 to 266×10-3 kg m−3. Contemporaneous estimates of vertical mixing reveal rapid convection in these unstable density profiles and mixing lifetimes from 7 to 12 min. The individual estimates of ice production from the salt budget reveal the intensity of short-term ice production, up to 110 cm d−1 during the windiest events, and a seasonal average of 29 cm d−1. We further found that frazil ice production rates covary with wind speed and with location along the upstream–downstream length of the polynya. These measurements reveal that it is possible to indirectly observe and estimate the process of unconsolidated ice production in polynyas by measuring upper-ocean water column profiles. These vigorous ice production rates suggest frazil ice may be an important component in total polynya ice production. 
    more » « less
  5. Abstract. During katabatic wind events in the Terra Nova Bay and Ross Sea polynyas, wind speeds exceeded 20 m s−1, air temperatures were below −25 ℃, and the mixed layer extended as deep as 600 meters. Yet, upper ocean temperature and salinity profiles were not perfectly homogeneous, as would be expected with vigorous convective heat loss. Instead, the profiles revealed bulges of warm and salty water directly beneath the ocean surface and extending downwards tens of meters. Considering both the colder air above and colder water below, we suggest the increase in temperature and salinity reflects latent heat and salt release during unconsolidated frazil ice production within the upper water column. We use a simplified salt budget to analyze these anomalies to estimate in-situ frazil ice concentration between 332 × 10−3 and 24.4 × 10−3 kg m−3. Contemporaneous estimates of vertical mixing by turbulent kinetic energy dissipation reveal rapid convection in these unstable density profiles, and mixing lifetimes from 2 to 12 minutes. The corresponding median rate of ice production is 26 cm day−1 and compares well with previous empirical and model estimates. Our individual estimates of ice production up to 378 cm day−1 reveal the intensity of short-term ice production events during the windiest episodes of our occupation of Terra Nova Bay Polynya. How to cite: De Pace, L., Smith, M., Thomson, J., Stammerjohn, S., Ackley, S., and Loose, B.: Frazil ice growth and production during katabatic wind events in the Ross Sea, Antarctica, The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-213, in review, 2019. 
    more » « less