skip to main content

Title: Winter seal-based observations reveal glacial meltwater surfacing in the southeastern Amundsen Sea

Determining the injection of glacial meltwater into polar oceans is crucial for quantifying the climate system response to ice sheet mass loss. However, meltwater is poorly observed and its pathways poorly known, especially in winter. Here we present winter meltwater distribution near Pine Island Glacier using data collected by tagged seals, revealing a highly variable meltwater distribution with two meltwater-rich layers in the upper 250 m and at around 450 m, connected by scattered meltwater-rich columns. We show that the hydrographic signature of meltwater is clearest in winter, when its presence can be unambiguously mapped. We argue that the buoyant meltwater provides near-surface heat that helps to maintain polynyas close to ice shelves. The meltwater feedback onto polynyas and air-sea heat fluxes demonstrates that although the processes determining the distribution of meltwater are small-scale, they are important to represent in Earth system models.

; ; ; ; ; ;
Award ID(s):
1929991 1744562
Publication Date:
Journal Name:
Communications Earth & Environment
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Katabatic winds in coastal polynyas expose the ocean to extreme heat loss, causing intense sea ice production and dense water formation around Antarctica throughout autumn and winter. The advancing sea ice pack, combined with high winds and low temperatures, has limited surface oceanobservations of polynyas in winter, thereby impeding new insights into theevolution of these ice factories through the dark austral months. Here, wedescribe oceanic observations during multiple katabatic wind events duringMay 2017 in the Terra Nova Bay and Ross Sea polynyas. Wind speeds regularlyexceeded 20 m s−1, air temperatures were below −25 ∘C, and the oceanic mixed layer extended to 600 m. During these events, conductivity–temperature–depth (CTD)profiles revealed bulges of warm, salty water directly beneath the oceansurface and extending downwards tens of meters. These profiles reflect latent heat and salt release during unconsolidated frazil ice production, driven by atmospheric heat loss, a process that has rarely if ever been observed outside the laboratory. A simple salt budget suggests these anomalies reflect in situ frazil ice concentration that ranges from 13 to 266×10-3 kg m−3. Contemporaneous estimates of vertical mixing reveal rapid convection in these unstable density profiles and mixing lifetimes from 7 to 12 min. The individual estimates of ice production from the salt budgetmore »reveal the intensity of short-term ice production, up to 110 cm d−1 during the windiest events, and a seasonal average of 29 cm d−1. We further found that frazil ice production rates covary with wind speed and with location along the upstream–downstream length of the polynya. These measurements reveal that it is possible to indirectly observe and estimate the process of unconsolidated ice production in polynyas by measuring upper-ocean water column profiles. These vigorous ice production rates suggest frazil ice may be an important component in total polynya ice production.« less
  2. Continental slopes – steep regions between the shelf break and abyssal ocean – play key roles in the climatology and ecology of the Arctic Ocean. Here, through review and synthesis, we find that the narrow slope regions contribute to ecosystem functioning disproportionately to the size of the habitat area (∼6% of total Arctic Ocean area). Driven by inflows of sub-Arctic waters and steered by topography, boundary currents transport boreal properties and particle loads from the Atlantic and Pacific Oceans along-slope, thus creating both along and cross-slope connectivity gradients in water mass properties and biomass. Drainage of dense, saline shelf water and material within these, and contributions of river and meltwater also shape the characteristics of the slope domain. These and other properties led us to distinguish upper and lower slope domains; the upper slope (shelf break to ∼800 m) is characterized by stronger currents, warmer sub-surface temperatures, and higher biomass across several trophic levels (especially near inflow areas). In contrast, the lower slope has slower-moving currents, is cooler, and exhibits lower vertical carbon flux and biomass. Distinct zonation of zooplankton, benthic and fish communities result from these differences. Slopes display varying levels of system connectivity: (1) along-slope through property andmore »material transport in boundary currents, (2) cross-slope through upwelling of warm and nutrient rich water and down-welling of dense water and organic rich matter, and (3) vertically through shear and mixing. Slope dynamics also generate separating functions through (1) along-slope and across-slope fronts concentrating biological activity, and (2) vertical gradients in the water column and at the seafloor that maintain distinct physical structure and community turnover. At the upper slope, climatic change is manifested in sea-ice retreat, increased heat and mass transport by sub-Arctic inflows, surface warming, and altered vertical stratification, while the lower slope has yet to display evidence of change. Model projections suggest that ongoing physical changes will enhance primary production at the upper slope, with suspected enhancing effects for consumers. We recommend Pan-Arctic monitoring efforts of slopes given that many signals of climate change appear there first and are then transmitted along the slope domain.« less
  3. Abstract Antarctic glacial meltwater is thought to play an important role in determining large-scale Southern Ocean climate trends, yet recent modeling efforts have proceeded without a good understanding of how its vertical distribution in the water column is set. To rectify this, here we conduct new large-eddy simulations of the ascent of a buoyant meltwater plume after its escape from beneath an Antarctic ice shelf. We find that the meltwater’s settling depth is primarily a function of the buoyancy forcing per unit width of the source and the ambient stratification, consistent with the classical theory of turbulent buoyant plumes and in contrast to previous work that suggested an important role for centrifugal instability. Our results further highlight the significant role played by localized variability in stratification; this helps explain observed interannual variability in the vertical meltwater distribution near Pine Island Glacier. Because of the vast heterogeneity in mass loss rates and ambient conditions at different Antarctic ice shelves, a dynamic parameterization of meltwater settling depth may be crucial for accurately simulating high-latitude climate in a warming world; we discuss how this may be developed following this work, and where the remaining challenges lie.
  4. We assess Antarctic sea ice climatology and variability in version 2 of the Community Earth System Model (CESM2), and compare it to that in the older CESM1 and (where appropriate) real-world observations. In CESM2, Antarctic sea ice is thinner and less extensive than in CESM1, though sea ice area is still approximately 1 million km2 greater in CESM2 than in present-day observations. Though there is less Antarctic sea ice in CESM2, the annual cycle of ice growth and melt is more vigorous in CESM2 than in CESM1. A new mushy-layer thermodynamics formulation implemented in the latest version of the Community Ice Code (CICE) in CESM2 accounts for both greater frazil ice forma- tion in coastal polynyas and more snow-to-ice conversion near the edge of the ice pack in the new model. Greater winter ice divergence in CESM2 (relative to CESM1) is due to stronger stationary wave activity and greater wind stress curl over the ice pack. Greater wind stress curl, in turn, drives more warm water upwelling under the ice pack, thinning it and decreasing its extent. Overall, differences between Antarctic sea ice in CESM2 and CESM1 arise due to both differences in their sea ice thermodynamics formulations, and differencesmore »in their coupled atmosphere-ocean states.« less
  5. ABSTRACT Increasing ocean and air temperatures have contributed to the removal of floating ice shelves from several Greenland outlet glaciers; however, the specific contribution of these external forcings remains poorly understood. Here we use atmospheric, oceanographic and glaciological time series data from the ice shelf of Petermann Gletscher, NW Greenland to quantify the forcing of the ocean and atmosphere on the ice shelf at a site ~16 km from the grounding line within a large sub-ice-shelf channel. Basal melt rates here indicate a strong seasonality, rising from a winter mean of 2 m a −1 to a maximum of 80 m a −1 during the summer melt season. This increase in basal melt rates confirms the direct link between summer atmospheric warming around Greenland and enhanced ocean-forced melting of its remaining ice shelves. We attribute this enhanced melting to increased discharge of subglacial runoff into the ocean at the grounding line, which strengthens under-ice currents and drives a greater ocean heat flux toward the ice base.