skip to main content


Title: Winter seal-based observations reveal glacial meltwater surfacing in the southeastern Amundsen Sea
Abstract

Determining the injection of glacial meltwater into polar oceans is crucial for quantifying the climate system response to ice sheet mass loss. However, meltwater is poorly observed and its pathways poorly known, especially in winter. Here we present winter meltwater distribution near Pine Island Glacier using data collected by tagged seals, revealing a highly variable meltwater distribution with two meltwater-rich layers in the upper 250 m and at around 450 m, connected by scattered meltwater-rich columns. We show that the hydrographic signature of meltwater is clearest in winter, when its presence can be unambiguously mapped. We argue that the buoyant meltwater provides near-surface heat that helps to maintain polynyas close to ice shelves. The meltwater feedback onto polynyas and air-sea heat fluxes demonstrates that although the processes determining the distribution of meltwater are small-scale, they are important to represent in Earth system models.

 
more » « less
Award ID(s):
1929991 1744562
NSF-PAR ID:
10216444
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Earth & Environment
Volume:
2
Issue:
1
ISSN:
2662-4435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Over the Ross Sea shelf, annual primary production is limited by dissolved iron (DFe) supply. Here, a major source of DFe to surface waters is thought to be vertical resupply from the benthos, which is assumed most prevalent during winter months when katabatic winds drive sea ice formation and convective overturn in coastal polynyas, although the impact of these processes on water‐column DFe distributions has not been previously documented. We collected hydrographic data and water‐column samples for trace metals analysis in the Terra Nova Bay and Ross Ice Shelf polynyas during April–May 2017 (late austral fall). In the Terra Nova Bay polynya, we observed intense katabatic wind events, and surface mixed layer depths varied from ∼250 to ∼600 m over lateral distances <10 km; there vertical mixing was just starting to excavate the dense, iron‐rich Shelf Waters, and there was also evidence of DFe inputs at shallower depths in the water column. In the Ross Ice Shelf polynya, wind speeds were lower, mixed layers were <300 m deep, and DFe distributions were similar to previous, late‐summer observations, with concentrations elevated near the seafloor. Corresponding measurements of dissolved manganese and zinc, and particulate iron, manganese, and aluminum, suggest that deep DFe maxima and some mid‐depth DFe maxima primarily reflect sedimentary inputs, rather than remineralization. Our data and model simulations imply that vertical resupply of DFe in the Ross Sea occurs mainly during mid‐late winter, and may be particularly sensitive to changes in the timing and extent of sea ice production.

     
    more » « less
  2. Abstract

    Sea ice production is critical to ocean overturning. Brine released within Antarctic polynyas transforms surface water into denser Shelf Water (SW). In spite of the persistent Dalton Polynya, SW is absent off Sabrina Coast. To explain its passive role in‐situ and remote datasets for 2003–2015 are analyzed. Combined volume export near the shelf break and inshore volume change render an average sea ice production of 197.41 km3per year (4.6 m/yr productivity), highly correlated (0.95) to divergent interior sea ice motion. Meltwater input of 157.5 Gt/yr is required to match the salinity of a prominent subsurface Thermostad measured in 2014–2015. SW formed during 2003–2008 but halted in 2009–2011, when summer sea ice divergence and export were at a minimum (<10 km3), significantly freshening the Thermostad (−5.07 ΔS per decade). Large sea ice export (>30 km3) increased its salinity (2.16 ΔS per decade) since 2012.

     
    more » « less
  3. Abstract

    Antarctic coastal polynyas are hotspots of biological production with intensive springtime phytoplankton blooms that strongly depend on meltwater‐induced restratification in the upper part of the water column. However, the fundamental physics that determine spatial inhomogeneity of the spring restratification remain unclear. Here, we investigate how different meltwaters affect springtime restratification and thus phytoplankton bloom in Antarctic coastal polynyas. A high‐resolution coupled ice‐shelf/sea‐ice/ocean model is used to simulate an idealized coastal polynya similar to the Terra Nova Bay Polynya, Ross Sea, Antarctica. To evaluate the contribution of various meltwater sources, we conduct sensitivity simulations altering physical factors such as alongshore winds, ice shelf basal melt, and surface freshwater runoff. Our findings indicate that sea ice meltwater from offshore is the primary buoyancy source of polynya near‐surface restratification, particularly in the outer‐polynya region where chlorophyll concentration tends to be high. Downwelling‐favorable alongshore winds can direct offshore sea ice away and prevent sea ice meltwater from entering the polynya region. Although the ice shelf basal meltwater can ascend to the polynya surface, much of it is mixed vertically over the water column and confined horizontally to a narrow coastal region, and thus does not contribute significantly to the polynya near‐surface restratification. Surface runoff from ice shelf surface melt could contribute greatly to the polynya near‐surface restratification. Nearby ice tongues and headlands strongly influence the restratification through modifying polynya circulation and meltwater transport pathways. Results of this study can help explain observed spatiotemporal variability in restratification and associated biological productivity in Antarctic coastal polynyas.

     
    more » « less
  4. null (Ed.)
    Abstract. Katabatic winds in coastal polynyas expose the ocean to extreme heat loss, causing intense sea ice production and dense water formation around Antarctica throughout autumn and winter. The advancing sea ice pack, combined with high winds and low temperatures, has limited surface oceanobservations of polynyas in winter, thereby impeding new insights into theevolution of these ice factories through the dark austral months. Here, wedescribe oceanic observations during multiple katabatic wind events duringMay 2017 in the Terra Nova Bay and Ross Sea polynyas. Wind speeds regularlyexceeded 20 m s−1, air temperatures were below −25 ∘C, and the oceanic mixed layer extended to 600 m. During these events, conductivity–temperature–depth (CTD)profiles revealed bulges of warm, salty water directly beneath the oceansurface and extending downwards tens of meters. These profiles reflect latent heat and salt release during unconsolidated frazil ice production, driven by atmospheric heat loss, a process that has rarely if ever been observed outside the laboratory. A simple salt budget suggests these anomalies reflect in situ frazil ice concentration that ranges from 13 to 266×10-3 kg m−3. Contemporaneous estimates of vertical mixing reveal rapid convection in these unstable density profiles and mixing lifetimes from 7 to 12 min. The individual estimates of ice production from the salt budget reveal the intensity of short-term ice production, up to 110 cm d−1 during the windiest events, and a seasonal average of 29 cm d−1. We further found that frazil ice production rates covary with wind speed and with location along the upstream–downstream length of the polynya. These measurements reveal that it is possible to indirectly observe and estimate the process of unconsolidated ice production in polynyas by measuring upper-ocean water column profiles. These vigorous ice production rates suggest frazil ice may be an important component in total polynya ice production. 
    more » « less
  5. Abstract

    Pine Island Ice Shelf, in the Amundsen Sea, is losing mass due to increased heat transport by warm ocean water penetrating beneath the ice shelf and causing basal melt. Tracing this warm deep water and the resulting glacial meltwater can identify changes in melt rate and the regions most affected by the increased input of this freshwater. Here, optimum multiparameter analysis is used to deduce glacial meltwater fractions from independent water mass characteristics (standard hydrographic observations, noble gases, and oxygen isotopes), collected during a ship‐based campaign in the eastern Amundsen Sea in February–March 2014. Noble gases (neon, argon, krypton, and xenon) and oxygen isotopes are used to trace the glacial melt and meteoric water found in seawater, and we demonstrate how their signatures can be used to rectify the hydrographic trace of glacial meltwater, which provides a much higher‐resolution picture. The presence of glacial meltwater is shown to mask the Winter Water properties, resulting in differences between the water mass analyses of up to 4‐g/kg glacial meltwater content. This discrepancy can be accounted for by redefining the “pure” Winter Water endpoint in the hydrographic glacial meltwater calculation. The corrected glacial meltwater content values show a persistent signature between 150 and 400 m of the water column across all of the sample locations (up to 535 km from Pine Island Ice Shelf), with increased concentration toward the west along the coastline. It also shows, for the first time, the signature of glacial meltwater flowing off‐shelf in the eastern channel.

     
    more » « less