skip to main content


Search for: All records

Award ID contains: 1744661

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background: In bioinformatics, network alignment algorithms have been applied to protein-protein interaction (PPI) networks to discover evolutionary conserved substructures at the system level. However, most previous methods aim to maximize the similarity of aligned proteins in pairwise networks, while concerning little about the feature of connectivity in these substructures, such as the protein complexes. Results: In this paper, we identify the problem of finding conserved protein complexes, which requires the aligned proteins in a PPI network to form a connected subnetwork. By taking the feature of connectivity into consideration, we propose ConnectedAlign, an efficient method to find conserved protein complexes from multiple PPI networks. The proposed method improves the coverage significantly without compromising of the consistency in the aligned results. In this way, the knowledge of protein complexes in well-studied species can be extended to that of poor-studied species. Conclusions: We conducted extensive experiments on real PPI networks of four species, including human, yeast, fruit fly and worm. The experimental results demonstrate dominant benefits of the proposed method in finding protein complexes across multiple species. 
    more » « less
  2. Protein-protein interaction (PPI) network alignment has been motivating researches for the comprehension of the underlying crucial biological knowledge, such as conserved evolutionary pathways and functionally conserved proteins throughout different species. Existing PPI network alignment methods have tried to improve the coverage ratio by aligning all proteins from different species. However, there is a fundamental biological justification needed to be acknowledged, that not every protein in a species can, nor should, find homologous proteins in other species. In this paper, we propose a novel approach for multiple PPI network alignment that tries to align only those proteins with the most similarities. To provide more comprehensive supports in computing the similarity, we integrate structural features of the networks together with biological characteristics during the alignment. For the structural features, we apply on PPI networks a representation learning method, which creates a low-dimensional vector embedding with the surrounding topologies of each protein in the network. This approach quantifies the structural features, and provides a new way to determine the topological similarity of the networks by transferring which as calculations in vector similarities. We also propose a new metric for the topological evaluation which can better assess the topological quality of the alignment results across different networks. Both biological and topological evaluations demonstrate our approach is promising and preferable against previous multiple alignment methods. 
    more » « less
  3. Protein-protein interaction (PPI) network alignment has been motivating researches for the comprehension of the underlying crucial biological knowledge, such as conserved evolutionary pathways and functionally conserved proteins throughout different species. Existing PPI network alignment methods have tried to improve the coverage ratio by aligning all proteins from different species. However, there is a fundamental biological justification needed to be acknowledged, that not every protein in a species can, nor should, find homologous proteins in other species. In this paper, we propose a novel approach for multiple PPI network alignment that tries to align only those proteins with the most similarities. To provide more comprehensive supports in computing the similarity, we integrate structural features of the networks together with biological characteristics during the alignment. For the structural features, we apply on PPI networks a representation learning method, which creates a low-dimensional vector embedding with the surrounding topologies of each protein in the network. This approach quantifies the structural features, and provides a new way to determine the topological similarity of the networks by transferring which as calculations in vector similarities. We also propose a new metric for the topological evaluation which can better assess the topological quality of the alignment results across different networks. Both biological and topological evaluations demonstrate our approach is promising and preferable against previous multiple alignment methods. 
    more » « less
  4. Aspect-level opinion mining aims to find and aggregate opinions on opinion targets. Previous work has demonstrated that precise modeling of opinion targets within the surrounding context can improve performances. However, how to effectively and efficiently learn hidden word semantics and better represent targets and the context still needs to be further studied. In this paper, we propose and compare two interactive attention neural networks for aspectlevel opinion mining, one employs two bi-directional Long- Short-Term-Memory (BLSTM) and the other employs two Convolutional Neural Networks (CNN). Both frameworks learn opinion targets and the context respectively, followed by an attention mechanism that integrates hidden states learned from both the targets and context.We compare our model with stateof- the-art baselines on two SemEval 2014 datasets1. Experiment results show that our models obtain competitive performances against the baselines on both datasets. Our work contributes to the improvement of state-of-the-art aspect-level opinion mining methods and offers a new approach to support human decision-making process based on opinion mining results. The quantitative and qualitative comparisons in our work aim to give basic guidance for neural network selection in similar tasks. 
    more » « less
  5. Subgraph matching query is to find out the subgraphs of data graph G which match a given query graph Q. Traditional methods can not deal with big data graphs due to their high computational complex. In this paper, we propose a distributed top-k subgraph search method over big graphs. The proposed method is designed at the level of single vertex and all vertices obtain their matching state separately without requiring global graph information. Therefore, it can be easily deployed in distributed platform like Hadoop. The evaluations of running time, number of messages and supersteps show the efficiency and scalability of the proposed method. 
    more » « less