skip to main content


Search for: All records

Award ID contains: 1744812

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2024
  2. Abstract As a highly contagious livestock viral disease, foot-and-mouth disease poses a great threat to the beef-cattle industry. Direct animal movement is always considered as a major route for between-farm transmission of FMD virus. Sharing contaminated equipment and vehicles have also attracted increasing interests as an indirect but considerable route for FMD virus transmission. With the rapid development of communication technologies, information-sharing techniques have been used to control epidemics. In this paper, we built farm-level time-series three-layer networks to simulate the between-farm FMD virus transmission in southwest Kansas by cattle movements (direct-contact layer) and truck visits (indirect-contact layer) and evaluate the impact of information-sharing techniques (information-sharing layer) on mitigating the epidemic. Here, the information-sharing network is defined as the structure that enables the quarantine of farms that are connected with infected farms. When a farm is infected, its infection status is shared with the neighboring farms in the information-sharing network, which in turn become quarantined. The results show that truck visits can enlarge the epidemic size and prolong the epidemic duration of the FMD outbreak by cattle movements, and that the information-sharing technique is able to mitigate the epidemic. The mitigation effect of the information-sharing network varies with the information-sharing network topology and different participation levels. In general, an increased participation leads to a decreased epidemic size and an increased quarantine size. We compared the mitigation performance of three different information-sharing networks (random network, contact-based network, and distance-based network) and found the outbreak on the network with contact-based information-sharing layer has the smallest epidemic size under almost any participation level and smallest quarantine size with high participation. Furthermore, we explored the potential economic loss from the infection and the quarantine. By varying the ratio of the average loss of quarantine to the loss of infection, we found high participation results in reduced economic losses under the realistic assumption that culling costs are much greater than quarantine costs. 
    more » « less
  3. Woźniakowski, Grzegorz (Ed.)
    Human behavioral change around biosecurity in response to increased awareness of disease risks is a critical factor in modeling animal disease dynamics. Here, biosecurity is referred to as implementing control measures to decrease the chance of animal disease spreading. However, social dynamics are largely ignored in traditional livestock disease models. Not accounting for these dynamics may lead to substantial bias in the predicted epidemic trajectory. In this research, an agent-based model is developed by integrating the human decision-making process into epidemiological processes. We simulate human behavioral change on biosecurity practices following an increase in the regional disease incidence. We apply the model to beef cattle production systems in southwest Kansas, United States, to examine the impact of human behavior factors on a hypothetical foot-and-mouth disease outbreak. The simulation results indicate that heterogeneity of individuals regarding risk attitudes significantly affects the epidemic dynamics, and human-behavior factors need to be considered for improved epidemic forecasting. With the same initial biosecurity status, increasing the percentage of risk-averse producers in the total population using a targeted strategy can more effectively reduce the number of infected producer locations and cattle losses compared to a random strategy. In addition, the reduction in epidemic size caused by the shifting of producers’ risk attitudes towards risk-aversion is heavily dependent on the initial biosecurity level. A comprehensive investigation of the initial biosecurity status is recommended to inform risk communication strategy design. 
    more » « less