skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Simulating human behavioral changes in livestock production systems during an epidemic: The case of the US beef cattle industry
Human behavioral change around biosecurity in response to increased awareness of disease risks is a critical factor in modeling animal disease dynamics. Here, biosecurity is referred to as implementing control measures to decrease the chance of animal disease spreading. However, social dynamics are largely ignored in traditional livestock disease models. Not accounting for these dynamics may lead to substantial bias in the predicted epidemic trajectory. In this research, an agent-based model is developed by integrating the human decision-making process into epidemiological processes. We simulate human behavioral change on biosecurity practices following an increase in the regional disease incidence. We apply the model to beef cattle production systems in southwest Kansas, United States, to examine the impact of human behavior factors on a hypothetical foot-and-mouth disease outbreak. The simulation results indicate that heterogeneity of individuals regarding risk attitudes significantly affects the epidemic dynamics, and human-behavior factors need to be considered for improved epidemic forecasting. With the same initial biosecurity status, increasing the percentage of risk-averse producers in the total population using a targeted strategy can more effectively reduce the number of infected producer locations and cattle losses compared to a random strategy. In addition, the reduction in epidemic size caused by the shifting of producers’ risk attitudes towards risk-aversion is heavily dependent on the initial biosecurity level. A comprehensive investigation of the initial biosecurity status is recommended to inform risk communication strategy design.  more » « less
Award ID(s):
1744812
PAR ID:
10254015
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Woźniakowski, Grzegorz
Date Published:
Journal Name:
PLOS ONE
Volume:
16
Issue:
6
ISSN:
1932-6203
Page Range / eLocation ID:
e0253498
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The recurrence of epidemic waves has been a hallmark of infectious disease outbreaks. Repeated surges in infections pose significant challenges to public health systems, yet the mechanisms that drive these waves remain insufficiently understood. Most prior models attribute epidemic waves to exogenous factors, such as transmission seasonality, viral mutations, or implementation of public health interventions. We show that epidemic waves can emerge autonomously from the feedback loop between infection dynamics and human behavior. Our results are based on a behavioral framework in which individuals continuously adjust their level of risk mitigation subject to their perceived risk of infection, which depends on information availability and disease severity. We show that delayed behavioral responses alone can lead to the emergence of multiple epidemic waves. The magnitude and frequency of these waves depend on the interplay between behavioral factors (delay, severity, and sensitivity of responses) and disease factors (transmission and recovery rates). Notably, if the response is either too prompt or excessively delayed, multiple waves cannot emerge. Our results further align with previous observations that adaptive human behavior can produce nonmonotonic final epidemic sizes, shaped by the trade-offs between various biological and behavioral factors—namely, risk sensitivity, response stringency, and disease generation time. Interestingly, we found that the minimal final epidemic size occurs on regimes that exhibit a few damped oscillations. Altogether, our results emphasize the importance of integrating social and operational factors into infectious disease models, in order to capture the joint evolution of adaptive behavioral responses and epidemic dynamics. 
    more » « less
  2. The transmission dynamics of infectious diseases and human responses are intertwined, forming complex feedback loops. However, many epidemic models fail to endogenously represent human behavior change. In this study, we introduce a novel behavioral epidemic model that incorporates various behavioral phenomena into SEIR models, including risk-response dynamics, shifts in containment policies, adherence fatigue, and societal learning, alongside disease transmission dynamics. By testing our model against data from 8 countries, where extensive behavioral data were available, we simultaneously replicate death rates, mobility trends, fatigue levels, and policy changes, both in-sample and out-of-sample. Our model offers a comprehensive depiction of changes in multiple behavioral measures along with the spread of the disease. We assess the explanatory power of each model mechanism in capturing data variability. Our findings demonstrate that the comprehensive model that includes all mechanisms provides the most insightful perspective for understanding the influence of human behavior during pandemics. 
    more » « less
  3. Struchiner, Claudio José (Ed.)
    Behavioral epidemic models incorporating endogenous societal risk-response, where changes in risk perceptions prompt adjustments in contact rates, are crucial for predicting pandemic trajectories. Accurate parameter estimation in these models is vital for validation and precise projections. However, few studies have examined the problem of identifiability in models where disease and behavior parameters must be jointly estimated. To address this gap, we conduct simulation experiments to assess the effect on parameter estimation accuracy of a) delayed risk response, b) neglecting behavioral response in model structure, and c) integrating disease and public behavior data. Our findings reveal systematic biases in estimating behavior parameters even with comprehensive and accurate disease data and a well-structured simulation model when data are limited to the first wave. This is due to the significant delay between evolving risks and societal reactions, corresponding to the duration of a pandemic wave. Moreover, we demonstrate that conventional SEIR models, which disregard behavioral changes, may fit well in the early stages of a pandemic but exhibit significant errors after the initial peak. Furthermore, early on, relatively small data samples of public behavior, such as mobility, can significantly improve estimation accuracy. However, the marginal benefits decline as the pandemic progresses. These results highlight the challenges associated with the joint estimation of disease and behavior parameters in a behavioral epidemic model. 
    more » « less
  4. The recent pandemic emphasized the need to consider the role of human behavior in shaping epidemic dynamics. In particular, it is necessary to extend beyond the classical epidemiological structures to fully capture the interplay between the spread of disease and how people respond. Here, we focus on the challenge of incorporating change in human behavior in the form of “risk response” into compartmental epidemiological models, where humans adapt their actions in response to their perceived risk of becoming infected. The review examines 37 papers containing over 40 compartmental models, categorizing them into two fundamentally distinct classes: exogenous and endogenous approaches to modeling risk response. While in exogenous approaches, human behavior is often included using different fixed parameter values for certain time periods, endogenous approaches seek for a mechanism internal to the model to explain changes in human behavior as a function of the state of disease. We further discuss two different formulations within endogenous models as implicit versus explicit representation of information diffusion. This analysis provides insights for modelers in selecting an appropriate framework for epidemic modeling. 
    more » « less
  5. Human behavior shapes epidemic trajectories, evolving as individuals reassess risks over time. Our study closes the loop between epidemic status, individual risk assessments, and interactions. We developed an agent-based model where the individuals can alter their decisions based on perceived risks. In our model, agents’ perceived risk is proxied by their full awareness of actual risks, such as the probability of infection or death. We conducted several simulations of COVID-19 spread for a large metropolitan city akin to New York City, covering the period from December 2020 to May 2021. Our model allows residents to decide daily on traveling to crowded city areas or stay in neighborhoods with relatively lower population density. Our base run simulations indicate that when individuals assess their own risk and understand how diseases spread, they adopt behaviors that slow the spread of virus, leading to fewer cumulative cases and deaths but extending the duration of the outbreak. This model was then simulated with various vaccination strategies such as random distribution, prioritizing older individuals, high-contact-rate individuals, or crowded area residents, all within a risk-response behavioral framework. Results show that, in the presence of agents’ behavioral response, there is only a marginal difference across different vaccination strategies. Specifically, vaccination in crowded areas slightly outperformed other vaccination strategies in reducing infections and prioritizing the elderly was slightly more effective in decreasing deaths. The lack of a universally superior vaccination strategy comes from the fact that lowering a risk leads to more risky behavior which partly compensates for vaccination effects. The comparable outcomes of random versus targeted vaccinations highlight the importance of equitable distribution as another key focus in pandemic responses. 
    more » « less