skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1745960

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract The M waves introduced by Burridge and Willis (1969) are emitted by the surface of a self-similarly expanding elliptical crack, and they give Rayleigh waves at the corresponding crack speed. In the analysis for the self-similarly expanding spherical inclusion with phase change (dynamic Eshelby problem) the M waves are related to the waves obtained on the basis of the dynamic Green’s function containing the contribution from the latest wavelets emitted by the expanding boundary of phase discontinuity, and they satisfy the Hadamard jump conditions for compatibility and linear momentum across the moving phase boundary of discontinuity. In the interior of the expanding inclusion they create a “lacuna” with zero particle velocity by canceling the effect of the P and S. It is shown that the “lacuna” and Eshelby properties are also valid for a Newtonian fluid undergoing phase change in a self-similarly expanding ellipsoidal region of a fluid with different viscosity. 
    more » « less
  2. null (Ed.)