SUMMARY Long-period seismic events (LPs) are observed within active volcanoes, hydrothermal systems and hydraulic fracturing. The prevailing model for LP seismic events suggests that they result from pressure disturbances in fluid-filled cracks that generate slow, dispersive waves known as Krauklis waves. These waves oscillate within the crack, causing it to act as a seismic resonator whose far-field radiations are known as LP events. Since these events are generated from fluid-filled cracks, they have been used to analyse fluid transport and fracturing in geological settings. Additionally, they are deemed precursors to volcanic eruptions. However, other mechanisms have been proposed to explain LP seismicity. Thus, a robust interpretation of these events requires understanding all parameters contributing to LP seismicity. To achieve this, for the first time, we have developed a physical model to investigate LP seismicity under controlled-source conditions. The physical model consists of a 30 cm × 15 cm × 0.2 cm crack embedded within a concrete slab with dimensions of 3 m × 3 m × 0.24 m. Using this apparatus, we investigate fundamental factors affecting long-period seismic signals, including crack stiffness, fluid density and viscosity, radiation patterns and triggering location. Our findings are consistent with the theoretical model for Krauklis waves within a fluid-filled crack. In this study, we examine the interplay between fluid properties and characteristics of waves within and radiated from the crack model. Records from a pressure transducer within the crack model have the same frequency characteristics as the surface sensors, indicating that the surface sensors are recording the crack waves. Because the crack stiffness parameters for all the fluids are relatively high, fluid density variations have a larger effect on the crack wave frequency, with higher density fluids yielding lower resonance frequencies. Similarly, the quality factor (Q) decreases with increasing fluid density. We also find that an increase in fluid viscosity along with the increased fluid density results in a decrease in resonance frequency and Q. Trigger locations at the middle of the crack length and width most effectively resonated the first and second transverse modes. Thus, this physical model can offer new horizons in understanding LP seismicity and bridge the gap between theoretical models and observed LP signals.
more »
« less
The M waves emitted by an expanding phase boundary create a “lacuna”
Abstract The M waves introduced by Burridge and Willis (1969) are emitted by the surface of a self-similarly expanding elliptical crack, and they give Rayleigh waves at the corresponding crack speed. In the analysis for the self-similarly expanding spherical inclusion with phase change (dynamic Eshelby problem) the M waves are related to the waves obtained on the basis of the dynamic Green’s function containing the contribution from the latest wavelets emitted by the expanding boundary of phase discontinuity, and they satisfy the Hadamard jump conditions for compatibility and linear momentum across the moving phase boundary of discontinuity. In the interior of the expanding inclusion they create a “lacuna” with zero particle velocity by canceling the effect of the P and S. It is shown that the “lacuna” and Eshelby properties are also valid for a Newtonian fluid undergoing phase change in a self-similarly expanding ellipsoidal region of a fluid with different viscosity.
more »
« less
- Award ID(s):
- 1745960
- PAR ID:
- 10205020
- Date Published:
- Journal Name:
- Journal of Applied Mechanics
- ISSN:
- 0021-8936
- Page Range / eLocation ID:
- 1 to 10
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Fluid dynamics of conventional passive fluid are known to be affected by boundary condition. For example, flow rates in a pipe depend on slipperiness of pipe surface. Similarly, active fluid, which consumes fuels locally to flow spontaneously, was reported to self-flow along a meter-long tubing with the flow rate depending on tubing geometry. However, how boundary condition influences fluid dynamics in an active fluid system remains poorly understood. Here, we investigated how a fluid boundary influenced self-organization of confined active fluid by establishing a 3D COMSOL-based nemato-hydrodynamic simulation platform where active fluid was confined in a compressed cylindrical water-in-oil droplet. Since the droplet interface was fluid, the fluid dynamics within and outside the droplet were coupled. Our simulation demonstrated that flow behaviors of intra-droplet active fluid were influenced by the amount of oil that surrounded the droplet: Without altering the droplet geometry, expanding the volume of oil could induce a circulatory flow within the droplet, which resembled our experimental observation. Our work suggested the feasibility of controlling the fluid dynamics of a confined active fluid system across a fluid interface.more » « less
-
Constraining the thermal and compositional state of the mantle is crucial for deciphering the formation and evolution of Mars. Mineral physics predicts that Mars’ deep mantle is demarcated by a seismic discontinuity arising from the pressure-induced phase transformation of the mineral olivine to its higher-pressure polymorphs, making the depth of this boundary sensitive to both mantle temperature and composition. Here, we report on the seismic detection of a midmantle discontinuity using the data collected by NASA’s InSight Mission to Mars that matches the expected depth and sharpness of the postolivine transition. In five teleseismic events, we observed triplicated P and S waves and constrained the depth of this discontinuity to be 1,006 ± 40 km by modeling the triplicated waveforms. From this depth range, we infer a mantle potential temperature of 1,605 ± 100 K, a result consistent with a crust that is 10 to 15 times more enriched in heat-producing elements than the underlying mantle. Our waveform fits to the data indicate a broad gradient across the boundary, implying that the Martian mantle is more enriched in iron compared to Earth. Through modeling of thermochemical evolution of Mars, we observe that only two out of the five proposed composition models are compatible with the observed boundary depth. Our geodynamic simulations suggest that the Martian mantle was relatively cold 4.5 Gyr ago (1,720 to 1,860 K) and are consistent with a present-day surface heat flow of 21 to 24 mW/m 2 .more » « less
-
Abstract Understanding the dynamics of microearthquakes is a timely challenge with the potential to address current paradoxes in earthquake mechanics, and to better understand earthquake ruptures induced by fluid injection. We perform fully 3D dynamic rupture simulations caused by fluid injection on a target fault for Fault Activation and Earthquake Ruptures experiments generatingMw ≤ 1 earthquakes. We investigate the dynamics of rupture propagation with spatially variable stress drop caused by pore pressure changes and assuming different slip‐weakening constitutive parameters. We show that the spontaneous arrest of propagating ruptures is possible by assuming a high fault strength parameter S, that is, a high ratio between strength excess and dynamic stress drop. In faults with high S values (low rupturing potential), even minor variations inDc(from 0.45 to 0.6 mm) have a substantial effect on the rupture propagation and the ultimate earthquake size. Modest spatial variations of dynamic stress drop determine the rupture mode, distinguishing self‐arresting from run‐away ruptures. Our results suggest that several characteristics inferred for accelerating dynamic ruptures differ from those observed during rupture deceleration of a self‐arresting earthquake. During deceleration, a decrease of peak slip velocity is associated with a nearly constant cohesive zone size. Moreover, the residual slip velocity value (asymptotic value for a crack‐like rupture) decreases to nearly zero. This means that an initially crack‐like rupture becomes a pulse‐like rupture during spontaneous arrest. These findings highlight the complex dynamics of small induced earthquakes, which differ from solutions obtained from conventional crack‐like models of earthquake rupture.more » « less
-
Abstract Englacial water transport is an integral part of the glacial hydrologic system, yet the geometry of englacial structures remains largely unknown. In this study, we explore the excitation of fluid resonance by small amplitude waves as a probe of englacial geometry. We model a hydraulic network consisting of one or more tabular cracks that intersect a cylindrical conduit, subject to oscillatory wave motion initiated at the water surface. Resulting resonant frequencies and quality factors are diagnostic of fluid properties and geometry of the englacial system. For a single crack–conduit system, the fundamental mode involves gravity-driven fluid sloshing between the conduit and the crack, at frequencies between 0.02 and 10 Hz for typical glacial parameters. Higher frequency modes include dispersive Krauklis waves generated within the crack and tube waves in the conduit. But we find that crack lengths are often well constrained by fundamental mode frequency and damping rate alone for settings that include alpine glaciers and ice sheets. Branching crack geometry and dip, ice thickness and source excitation function help define limits of crack detectability for this mode. In general, we suggest that identification of eigenmodes associated with wave motion in time series data may provide a pathway toward inferring englacial hydrologic structures.more » « less
An official website of the United States government

