skip to main content

Search for: All records

Award ID contains: 1748653

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Arctic rivers drain ~15% of the global land surface and significantly influence local communities and economies, freshwater and marine ecosystems, and global climate. However, trusted and public knowledge of pan-Arctic rivers is inadequate, especially for small rivers and across Eurasia, inhibiting understanding of the Arctic response to climate change. Here, we calculate daily streamflow in 486,493 pan-Arctic river reaches from 1984-2018 by assimilating 9.18 million river discharge estimates made from 155,710 satellite images into hydrologic model simulations. We reveal larger and more heterogenous total water export (3-17% greater) and water export acceleration (factor of 1.2-3.3 larger) than previously reported, with substantial differences across basins, ecoregions, stream orders, human regulation, and permafrost regimes. We also find significant changes in the spring freshet and summer stream intermittency. Ultimately, our results represent an updated, publicly available, and more accurate daily understanding of Arctic rivers uniquely enabled by recent advances in hydrologic modeling and remote sensing.

    more » « less
  2. Abstract

    Recent advances in remote sensing and the upcoming launch of the joint NASA/CNES/CSA/UKSA Surface Water and Ocean Topography (SWOT) satellite point toward improved river discharge estimates in ungauged basins. Existing discharge methods rely on “prior river knowledge” to infer parameters not directly measured from space. Here, we show that discharge estimation is improved by classifying and parameterizing rivers based on their unique geomorphology and hydraulics. Using over 370,000 in situ hydraulic observations as training data, we test unsupervised learning and an “expert” method to assign these hydraulics and geomorphology to rivers via remote sensing. This intervention, along with updates to model physics, constitutes a new method we term “geoBAM,” an update of the Bayesian At‐many‐stations hydraulic geometry‐Manning's (BAM) algorithm. We tested geoBAM on Landsat imagery over more than 7,500 rivers (108 are gauged) in Canada's Mackenzie River basin and on simulated hydraulic data for 19 rivers that mimic SWOT observations without measurement error. geoBAM yielded considerable improvement over BAM, improving the median Nash‐Sutcliffe efficiency (NSE) for the Mackenzie River from −0.05 to 0.26 and from 0.16 to 0.46 for the SWOT rivers. Further, NSE improved by at least 0.10 in 78/108 gauged Mackenzie rivers and 8/19 SWOT rivers. We attribute geoBAM improvement to parameterizing rivers by type rather than globally, but prediction accuracy worsens if parameters are misassigned. This method is easily mapped to rivers at the global scale and paves the way for improving future discharge estimates, especially when coupled with hydrologic models.

    more » « less
  3. Abstract

    Conventional satellite platforms are limited in their ability to monitor rivers at fine spatial and temporal scales: suffering from unavoidable trade‐offs between spatial and temporal resolutions. CubeSat constellations, however, can provide global data at high spatial and temporal resolutions, albeit with reduced spectral information. This study provides a first assessment of using CubeSat data for river discharge estimation in both gauged and ungauged settings. Discharge was estimated for 11 Arctic rivers with sizes ranging from 16 to >1,000 m wide using the Bayesian at‐many‐stations hydraulic geometry‐Manning algorithm (BAM). BAM‐at‐many‐stations hydraulic geometry solves for hydraulic geometry parameters to estimate flow and requires only river widths as input. Widths were retrieved from Landsat 8 and Sentinel‐2 data sets and a CubeSat (the Planet company) data set, as well as their fusions. Results show satellite data fusion improves discharge estimation for both large (>100 m wide) and medium (40–100 m wide) rivers by increasing the number of days with a discharge estimation by a factor of 2–6 without reducing accuracy. Narrow rivers (<40 m wide) are too small for Landsat and Sentinel‐2 data sets, and their discharge is also not well estimated using CubeSat data alone, likely because the four‐band sensor cannot resolve water surfaces accurately enough. BAM technique outperforms space‐based rating curves when gauge data are available, and its accuracy is acceptable when no gauge data are present (instead relying on global reanalysis for discharge priors). Ultimately, we conclude that the data fusion presented here is a viable approach toward improving discharge estimates in the Arctic, even in ungauged basins.

    more » « less
  4. Free, publicly-accessible full text available February 1, 2024
  5. null (Ed.)
    Remote sensing of river discharge (RSQ) is a burgeoning field rife with innovation. This innovation has resulted in a highly non-cohesive subfield of hydrology advancing at a rapid pace, and as a result misconceptions, mis-citations, and confusion are apparent among authors, readers, editors, and reviewers. While the intellectually diverse subfield of RSQ practitioners can parse this confusion, the broader hydrology community views RSQ as a monolith and such confusion can be damaging. RSQ has not been comprehensively summarized over the past decade, and we believe that a summary of the recent literature has a potential to provide clarity to practitioners and general hydrologists alike. Therefore, we here summarize a broad swath of the literature, and find after our reading that the most appropriate way to summarize this literature is first by application area (into methods appropriate for gauged, semi-gauged, regionally gauged, politically ungauged, and totally ungauged basins) and next by methodology. We do not find categorizing by sensor useful, and everything from un-crewed aerial vehicles (UAVs) to satellites are considered here. Perhaps the most cogent theme to emerge from our reading is the need for context. All RSQ is employed in the service of furthering hydrologic understanding, and we argue that nearly all RSQ is useful in this pursuit provided it is properly contextualized. We argue that if authors place each new work into the correct application context, much confusion can be avoided, and we suggest a framework for such context here. Specifically, we define which RSQ techniques are and are not appropriate for ungauged basins, and further define what it means to be ‘ungauged’ in the context of RSQ. We also include political and economic realities of RSQ, as the objective of the field is sometimes to provide data purposefully cloistered by specific political decisions. This framing can enable RSQ to respond to hydrology at large with confidence and cohesion even in the face of methodological and application diversity evident within the literature. Finally, we embrace the intellectual diversity of RSQ and suggest the field is best served by a continuation of methodological proliferation rather than by a move toward orthodoxy and standardization. 
    more » « less