skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparing Discharge Estimates Made via the BAM Algorithm in High‐Order Arctic Rivers Derived Solely From Optical CubeSat, Landsat, and Sentinel‐2 Data
Abstract Conventional satellite platforms are limited in their ability to monitor rivers at fine spatial and temporal scales: suffering from unavoidable trade‐offs between spatial and temporal resolutions. CubeSat constellations, however, can provide global data at high spatial and temporal resolutions, albeit with reduced spectral information. This study provides a first assessment of using CubeSat data for river discharge estimation in both gauged and ungauged settings. Discharge was estimated for 11 Arctic rivers with sizes ranging from 16 to >1,000 m wide using the Bayesian at‐many‐stations hydraulic geometry‐Manning algorithm (BAM). BAM‐at‐many‐stations hydraulic geometry solves for hydraulic geometry parameters to estimate flow and requires only river widths as input. Widths were retrieved from Landsat 8 and Sentinel‐2 data sets and a CubeSat (the Planet company) data set, as well as their fusions. Results show satellite data fusion improves discharge estimation for both large (>100 m wide) and medium (40–100 m wide) rivers by increasing the number of days with a discharge estimation by a factor of 2–6 without reducing accuracy. Narrow rivers (<40 m wide) are too small for Landsat and Sentinel‐2 data sets, and their discharge is also not well estimated using CubeSat data alone, likely because the four‐band sensor cannot resolve water surfaces accurately enough. BAM technique outperforms space‐based rating curves when gauge data are available, and its accuracy is acceptable when no gauge data are present (instead relying on global reanalysis for discharge priors). Ultimately, we conclude that the data fusion presented here is a viable approach toward improving discharge estimates in the Arctic, even in ungauged basins.  more » « less
Award ID(s):
1748653
PAR ID:
10374961
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
55
Issue:
9
ISSN:
0043-1397
Page Range / eLocation ID:
p. 7753-7771
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Recent advances in remote sensing and the upcoming launch of the joint NASA/CNES/CSA/UKSA Surface Water and Ocean Topography (SWOT) satellite point toward improved river discharge estimates in ungauged basins. Existing discharge methods rely on “prior river knowledge” to infer parameters not directly measured from space. Here, we show that discharge estimation is improved by classifying and parameterizing rivers based on their unique geomorphology and hydraulics. Using over 370,000 in situ hydraulic observations as training data, we test unsupervised learning and an “expert” method to assign these hydraulics and geomorphology to rivers via remote sensing. This intervention, along with updates to model physics, constitutes a new method we term “geoBAM,” an update of the Bayesian At‐many‐stations hydraulic geometry‐Manning's (BAM) algorithm. We tested geoBAM on Landsat imagery over more than 7,500 rivers (108 are gauged) in Canada's Mackenzie River basin and on simulated hydraulic data for 19 rivers that mimic SWOT observations without measurement error. geoBAM yielded considerable improvement over BAM, improving the median Nash‐Sutcliffe efficiency (NSE) for the Mackenzie River from −0.05 to 0.26 and from 0.16 to 0.46 for the SWOT rivers. Further, NSE improved by at least 0.10 in 78/108 gauged Mackenzie rivers and 8/19 SWOT rivers. We attribute geoBAM improvement to parameterizing rivers by type rather than globally, but prediction accuracy worsens if parameters are misassigned. This method is easily mapped to rivers at the global scale and paves the way for improving future discharge estimates, especially when coupled with hydrologic models. 
    more » « less
  2. Abstract At‐many‐stations hydraulic geometry (AMHG), while useful for estimating river discharge from satellite data, remains empirical and has yet to be reconciled with the at‐a‐station hydraulic geometry (AHG) from which it was originally derived. Here we present evidence, using United States Geological Survey field measurements of channel hydraulics for 155 rivers, that AMHG can be hydraulically and geomorphically reconciled with AHG. Our results indicate that AMHG is rightly understood as an expression of a river‐wide model of hydraulics driven by changes in slope imposed upon AHG physics. The explanatory power of AHG and this river‐wide model combine to determine whether AMHG exists: if both AHG and the river‐wide model adequately describe hydraulics, then we show that AMHG is a necessary mathematical consequence of these two phenomena. We also orient these findings in the context of river discharge estimation and other applications. 
    more » « less
  3. Satellites provide a temporally discontinuous record of hydrological conditions along Earth’s rivers (e.g., river width, height, water quality). The degree to which archived satellite data effectively capture the overall population of river flow frequency is unknown. Here, we use the entire archives of Landsat 5, 7, and 8 to determine when a cloud-free image is available over the United States Geological Survey (USGS) river gauges located on Landsat-observable rivers. We compare the flow frequency distribution derived from the daily gauge record to the flow frequency distribution derived from ideally sampling gauged discharge based on the timing of cloud-free Landsat overpasses. Examining the patterns of flow frequency across multiple gauges, we find that there is not a statistically significant difference between the flow frequency distribution associated with observations contained within the Landsat archive and the flow frequency distribution derived from the daily gauge data (α = 0.05), except for hydrological extremes like maximum and minimum flow. At individual gauges, we find that Landsat observations span a wide range of hydrological conditions (97% of total flow variability observed in 90% of the study gauges) but the degree to which the Landsat sample can represent flow frequency distribution varies from location to location and depends on sample size. The results of this study indicate that the Landsat archive is, on average, representative of the temporal frequencies of hydrological conditions present along Earth’s large rivers with broad utility for hydrological, ecologic and biogeochemical evaluations of river systems. 
    more » « less
  4. Abstract The Surface Water and Ocean Topography (SWOT) satellite has the potential to transform global hydrologic science by offering simultaneous and synoptic estimates of river discharge and other hydraulic variables. Discharge is estimated from SWOT observations of water surface elevation, width, and slope. A first assessment using just the highest quality SWOT measurements, over the first 15 months (March 2023–July 2024) of the mission evaluated at 65 gauged reaches shows results consistent with pre‐launch expectations. SWOT estimates track discharge dynamics without relying on any gauge information: median correlation is 0.73, with a correlation interquartile range of 0.51–0.89. SWOT estimates capture discharge magnitude correctly in some cases but are biased (median bias is 50%) in others. There are already a total of 11,274 ungauged global locations with highest quality SWOT measurements where SWOT discharge is expected to accurately track discharge variations: this value will increase as SWOT data record length grows, algorithms are refined and SWOT measurements are reprocessed. This first look indicates that SWOT discharge is performing as expected for SWOT data that achieve performance requirements, providing observed information on discharge variations in ungauged basins globally. 
    more » « less
  5. Data compilations of bankfull downstream hydraulic geometry for alluvial rivers, lidar derived high-resolution spatial series of bankfull width for 67 sites, and hydrograph metrics for sites with USGS hydrographs. This compilation is composed of three datasets: (1) a compilation of alluvial river geometry at bankfull for a variety of hydraulic attributes; (2) x, y, and z coordinates of channel bank lines for a selection of sites and their associated river widths derived from high-resolution lidar topography; and (3) statistics describing the hydrographs for a subset of the larger compilation. These data are divided into two primary sets, the larger compilation and a smaller set of sites where the bankfull width was derived from lidar topography. For the high-resolution dataset, the data are available as the coordinates of the bank lines, spatial series of distance downstream and bankfull width, and the spatial series filtered for quality. 
    more » « less