Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The development of fully autonomous artificial pancreas systems (APS) that independently regulate the glucose levels of patients with Type 1 diabetes has been a long-standing goal of diabetes research. A significant barrier to progress is the difficulty of testing new control algorithms and safety features, since clinical trials are time- and resource-intensive. To facilitate ease of validation, we propose an open-source APS testbed that can integrate state-of-the-art APS controllers and glucose simulators with a novel fault injection engine. The testbed is used to reproduce the blood glucose trajectories of real patients from a clinical trial conducted over six months. We evaluate the performance of two closed-loop control algorithms (OpenAPS and Basal Bolus) using the testbed and find that these control algorithms are able to keep blood glucose in a safe region 93.49% and 79.46% of the time on average, compared with 66.18% of the time for the clinical trial. The fault injection engine simulates the real recalls and adverse events reported to the U.S. Food and Drug Administration (FDA) and demonstrates the resilience of the controller in hazardous conditions. We use the testbed to generate 2.5 years of synthetic data representing 20 different patient profiles with realistic adverse event scenarios, which would have been expensive and risky to collect in a clinical trial.more » « less
-
Medical Cyber-physical Systems (MCPS) are vulnerable to accidental or malicious faults that can target their controllers and cause safety hazards and harm to patients. This paper proposes a combined model and data-driven approach for designing context-aware monitors that can detect early signs of hazards and mitigate them in MCPS. We present a framework for formal specification of unsafe system context using Signal Temporal Logic (STL) combined with an optimization method for patient-specific refinement of STL formulas based on real or simulated faulty data from the closed-loop system for the generation of monitor logic. We evaluate our approach in simulation using two state-of-the-art closed-loop Artificial Pancreas Systems (APS). The results show the context-aware monitor achieves up to 1.4 times increase in average hazard prediction accuracy (F1score) over several baseline monitors, reduces false-positive and false-negative rates, and enables hazard mitigation with a 54% success rate while decreasing the average risk for patients.more » « less
-
Medical Cyber-physical Systems (MCPS) are vul- nerable to accidental or malicious faults that can target their controllers and cause safety hazards and harm to patients. This paper proposes a combined model and data-driven approach for designing context-aware monitors that can detect early signs of hazards and mitigate them in MCPS. We present a framework for formal specification of unsafe system context using Signal Temporal Logic (STL) combined with an optimization method for patient-specific refinement of STL formulas based on real or simulated faulty data from the closed-loop system for the gener- ation of monitor logic. We evaluate our approach in simulation using two state-of-the-art closed-loop Artificial Pancreas Systems (APS). The results show the context-aware monitor achieves up to 1.4 times increase in average hazard prediction accuracy (F1- score) over several baseline monitors, reduces false-positive and false-negative rates, and enables hazard mitigation with a 54% success rate while decreasing the average risk for patients.more » « less
-
Cyber-physical systems for robotic surgery have enabled minimally invasive procedures with increased precision and shorter hospitalization. However, with increasing complexity and connectivity of software and major involvement of human operators in the supervision of surgical robots, there remain significant challenges in ensuring patient safety. This paper presents a safety monitoring system that, given the knowledge of the surgical task being performed by the surgeon, can detect safety-critical events in real-time. Our approach integrates a surgical gesture classifier that infers the operational context from the time-series kinematics data of the robot with a library of erroneous gesture classifiers that given a surgical gesture can detect unsafe events. Our experiments using data from two surgical platforms show that the proposed system can detect unsafe events caused by accidental or malicious faults within an average reaction time window of 1,693 milliseconds and F1 score of 0.88 and human errors within an average reaction time window of 57 milliseconds and F1 score of 0.76.more » « less
-
With advances in sensing, networking, and computing, smart medical devices have been widely deployed in various clinical settings. However, cyber attacks on hospital networks and critical medical devices are serious threats to patient safety, security, and privacy. This paper studies the cyber-security attacks that target hospital networks and other interconnected clinical environments. Our goal is to characterize threat models in such environments by studying the public data from vulnerability databases on medical devices and reports on real attacks targeted at hospital networks. We use a keyword-based approach to identify security reports on medical devices. We summarize our observations from the analysis of the vulnerability reports and provide insights into the types and impacts of vulnerabilities.more » « less