Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 13, 2025
-
Free, publicly-accessible full text available May 13, 2025
-
The ongoing electrification of the transportation fleet will increase the load on the electric power grid. Since both the transportation network and the power grid already experience periods of significant stress, joint analyses of both infrastructures will most likely be necessary to ensure acceptable operation in the future. To enable such analyses, this paper presents an open- source testbed that jointly simulates high-fidelity models of both the electric distribution system and the transportation network. The testbed utilizes two open-source simulators, OpenDSS to simulate the electric distribution system and the microscopic traffic simulator SUMO to simulate the traffic dynamics. Electric vehicle charging links the electric distribution system and the transportation network models at vehicle locations determined using publicly available parcel data. Leveraging high-fidelity synthetic electric distribution system data from the SMART-DS project and transportation system data from OpenStreetMap, this testbed models the city of Greensboro, NC down to the household level. Moreover, the methodology and the supporting scripts released with the testbed allow adaption to other areas where high-fidelity geolocated OpenDSS datasets are available. After describing the components and usage of the testbed, we exemplify applications enabled by the testbed via two scenarios modeling the extreme stresses encountered during evacuations.more » « lessFree, publicly-accessible full text available May 1, 2025
-
Free, publicly-accessible full text available January 1, 2025
-
Free, publicly-accessible full text available January 1, 2025
-
Interval Markov decision processes are a class of Markov models where the transition probabilities between the states belong to intervals. In this paper, we study the problem of efficient estimation of the optimal policies in Interval Markov Decision Processes (IMDPs) with continuous action- space. Given an IMDP, we show that the pessimistic (resp. the optimistic) value iterations, i.e., the value iterations under the assumption of a competitive adversary (resp. cooperative agent), are monotone dynamical systems and are contracting with respect to the infinity-norm. Inspired by this dynamical system viewpoint, we introduce another IMDP, called the action-space relaxation IMDP. We show that the action-space relaxation IMDP has two key features: (i) its optimal value is an upper bound for the optimal value of the original IMDP, and (ii) its value iterations can be efficiently solved using tools and techniques from convex optimization. We then consider the policy optimization problems at each step of the value iterations as a feedback controller of the value function. Using this system- theoretic perspective, we propose an iteration-distributed imple- mentation of the value iterations for approximating the optimal value of the action-space relaxation IMDP.more » « lessFree, publicly-accessible full text available December 15, 2024