skip to main content


Search for: All records

Award ID contains: 1749465

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background

    Inter-population variation in host-associated microbiota reflects differences in the hosts’ environments, but this characterization is typically based on studies comparing few populations. The diversity of natural habitats and captivity conditions occupied by any given host species has not been captured in these comparisons. Moreover, intraspecific variation in gut microbiota, generally attributed to diet, may also stem from differential acquisition of environmental microbes—an understudied mechanism by which host microbiomes are directly shaped by environmental microbes. To more comprehensively characterize gut microbiota in an ecologically flexible host, the ring-tailed lemur (Lemur catta; n = 209), while also investigating the role of environmental acquisition, we used 16S rRNA sequencing of lemur gut and soil microbiota sampled from up to 13 settings, eight in the wilderness of Madagascar and five in captivity in Madagascar or the U.S. Based on matched fecal and soil samples, we used microbial source tracking to examine covariation between the two types of consortia.

    Results

    The diversity of lemur gut microbes varied markedly within and between settings. Microbial diversity was not consistently greater in wild than in captive lemurs, indicating that this metric is not necessarily an indicator of host habitat or environmental condition. Variation in microbial composition was inconsistent both with a single, representative gut community for wild conspecifics and with a universal ‘signal of captivity’ that homogenizes the gut consortia of captive animals. Despite the similar, commercial diets of captive lemurs on both continents, lemur gut microbiomes within Madagascar were compositionally most similar, suggesting that non-dietary factors govern some of the variability. In particular, soil microbial communities varied across geographic locations, with the few samples from different continents being the most distinct, and there was significant and context-specific covariation between gut and soil microbiota.

    Conclusions

    As one of the broadest, single-species investigations of primate microbiota, our study highlights that gut consortia are sensitive to multiple scales of environmental differences. This finding begs a reevaluation of the simple ‘captive vs. wild’ dichotomy. Beyond the important implications for animal care, health, and conservation, our finding that environmental acquisition may mediate aspects of host-associated consortia further expands the framework for how host-associated and environmental microbes interact across different microbial landscapes.

     
    more » « less
  2. Abstract

    Microbial rewilding, whereby exposure to naturalistic environments can modulate or augment gut microbiomes and improve host-microbe symbiosis, is being harnessed as an innovative approach to human health, one that may also have significant value to animal care and conservation. To test for microbial rewilding in animal microbiomes, we used a unique population of wild-born ring-tailed lemurs (Lemur catta) that were initially held as illegal pets in unnatural settings and, subsequently, relocated to a rescue center in Madagascar where they live in naturalistic environments. Using amplicon and shotgun metagenomic sequencing of lemur and environmental microbiomes, we found multiple lines of evidence for microbial rewilding in lemurs that were transitioned from unnatural to naturalistic environments: A lemur’s duration of exposure to naturalistic settings significantly correlated with (a) increased compositional similarly to the gut communities of wild lemurs, (b) decreased proportions of antibiotic resistance genes that were likely acquired via human contact during pethood, and (c) greater covariation with soil microbiomes from natural habitats. Beyond the inherent psychosocial value of naturalistic environments, we find that actions, such as providing appropriate diets, minimizing contact with humans, and increasing exposure to natural environmental consortia, may assist in maximizing host-microbe symbiosis in animals under human care.

     
    more » « less
  3. Abstract

    Research on animal microbiomes is increasingly aimed at determining the evolutionary and ecological factors that govern host–microbiome dynamics, which are invariably intertwined and potentially synergistic. We present three empirical studies related to this topic, each of which relies on the diversity of Malagasy lemurs (representing a total of 19 species) and the comparative approach applied across scales of analysis. In Study 1, we compare gut microbial membership across 14 species in the wild to test the relative importance of host phylogeny and feeding strategy in mediating microbiome structure. Whereas host phylogeny strongly predicted community composition, the same feeding strategies shared by distant relatives did not produce convergent microbial consortia, but rather shaped microbiomes in host lineage‐specific ways, particularly in folivores. In Study 2, we compare 14 species of wild and captive folivores, frugivores, and omnivores, to highlight the importance of captive populations for advancing gut microbiome research. We show that the perturbational effect of captivity is mediated by host feeding strategy and can be mitigated, in part, by modified animal management. In Study 3, we examine various scent‐gland microbiomes across three species in the wild or captivity and show them to vary by host species, sex, body site, and a proxy of social status. These rare data provide support for the bacterial fermentation hypothesis in olfactory signal production and implicate steroid hormones as mediators of microbial community structure. We conclude by discussing the role of scale in comparative microbial studies, the links between feeding strategy and host–microbiome coadaptation, the underappreciated benefits of captive populations for advancing conservation research, and the need to consider the entirety of an animal's microbiota. Ultimately, these studies will help move the field from exploratory to hypothesis‐driven research.

     
    more » « less
  4. null (Ed.)
  5. The study of human chemical communication benefits from comparative perspectives that relate humans, conceptually and empirically, to other primates. All major primate groups rely on intraspecific chemosignals, but strepsirrhines present the greatest diversity and specialization, providing a rich framework for examining design, delivery and perception. Strepsirrhines actively scent mark, possess a functional vomeronasal organ, investigate scents via olfactory and gustatory means, and are exquisitely sensitive to chemically encoded messages. Variation in delivery, scent mixing and multimodality alters signal detection, longevity and intended audience. Based on an integrative, 19-species review, the main scent source used (excretory versus glandular) differentiates nocturnal from diurnal or cathemeral species, reflecting differing socioecological demands and evolutionary trajectories. Condition-dependent signals reflect immutable (species, sex, identity, genetic diversity, immunity and kinship) and transient (health, social status, reproductive state and breeding history) traits, consistent with socio-reproductive functions. Sex reversals in glandular elaboration, marking rates or chemical richness in female-dominant species implicate sexual selection of olfactory ornaments in both sexes. Whereas some compounds may be endogenously produced and modified (e.g. via hormones), microbial analyses of different odorants support the fermentation hypothesis of bacterial contribution. The intimate contexts of information transfer and varied functions provide important parallels applicable to olfactory communication in humans. This article is part of the Theo Murphy meeting issue ‘Olfactory communication in humans’. 
    more » « less
  6. Abstract Host-associated microbiomes shape and are shaped by myriad processes that ultimately delineate their symbiotic functions. Whereas a host's stable traits, such as its lineage, relate to gross aspects of its microbiome structure, transient factors, such as its varying physiological state, relate to shorter-term, structural variation. Our understanding of these relationships in primates derives principally from anthropoid studies and would benefit from a broader, comparative perspective. We thus examined the vaginal, labial, and axillary microbiota of captive, female ring-tailed lemurs (Lemur catta) and Coquerel's sifakas (Propithecus coquereli), across an ovarian cycle, to better understand their relation to stable (e.g. species identity/mating system, body site) and transient (e.g. ovarian hormone concentration, forest access) host features. We used 16S amplicon sequencing to determine microbial composition and enzyme-linked immunosorbent assays to measure serum hormone concentrations. We found marked variation in microbiota diversity and community composition between lemur species and their body sites. Across both host species, microbial diversity was significantly correlated with ovarian hormone concentrations; negatively with progesterone and positively with estradiol. The hosts’ differential forest access related to the diversity of environmental microbes, particularly in axillary microbiomes. Such transient endogenous and exogenous modulators have potential implications for host reproductive health and behavioral ecology. 
    more » « less