skip to main content

Search for: All records

Award ID contains: 1749544

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Disturbances fundamentally alter ecosystem functions, yet predicting their impacts remains a key scientific challenge. While the study of disturbances is ubiquitous across many ecological disciplines, there is no agreed-upon, cross-disciplinary foundation for discussing or quantifying the complexity of disturbances, and no consistent terminology or methodologies exist. This inconsistency presents an increasingly urgent challenge due to accelerating global change and the threat of interacting disturbances that can destabilize ecosystem responses. By harvesting the expertise of an interdisciplinary cohort of contributors spanning 42 institutions across 15 countries, we identified an essential limitation in disturbance ecology: the word ‘disturbance’ is used interchangeably tomore »refer to both the events that cause, and the consequences of, ecological change, despite fundamental distinctions between the two meanings. In response, we developed a generalizable framework of ecosystem disturbances, providing a well-defined lexicon for understanding disturbances across perspectives and scales. The framework results from ideas that resonate across multiple scientific disciplines and provides a baseline standard to compare disturbances across fields. This framework can be supplemented by discipline-specific variables to provide maximum benefit to both inter- and intra-disciplinary research. To support future syntheses and meta-analyses of disturbance research, we also encourage researchers to be explicit in how they define disturbance drivers and impacts, and we recommend minimum reporting standards that are applicable regardless of scale. Finally, we discuss the primary factors we considered when developing a baseline framework and propose four future directions to advance our interdisciplinary understanding of disturbances and their social-ecological impacts: integrating across ecological scales, understanding disturbance interactions, establishing baselines and trajectories, and developing process-based models and ecological forecasting initiatives. Our experience through this process motivates us to encourage the wider scientific community to continue to explore new approaches for leveraging Open Science principles in generating creative and multidisciplinary ideas.« less
  2. The spread of an enteric pathogen in the human gut depends on many interacting factors, including pathogen exposure, diet, host gut environment, and host microbiota, but how these factors jointly influence infection outcomes remains poorly characterized. Here, we develop a model of host-mediated resource-competition between mutualistic and pathogenic taxa in the gut that aims to explain why similar hosts, exposed to the same pathogen, can have such different infection outcomes. Our model successfully reproduces several empirically observed phenomena related to transitions between healthy and infected states, including (1) the nonlinear relationship between pathogen inoculum size and infection persistence, (2) themore »elevated risk of chronic infection during or after treatment with broad-spectrum antibiotics, (3) the resolution of gut dysbiosis with fecal microbiota transplants, and (4) the potential protection from infection conferred by probiotics. We then use the model to explore how host-mediated interventions, namely shifts in the supply rates of electron donors (e.g., dietary fiber) and respiratory electron acceptors (e.g., oxygen), can potentially be used to direct gut community assembly. Our study demonstrates how resource competition and ecological feedbacks between the host and the gut microbiota can be critical determinants of human health outcomes. We identify several testable model predictions ready for experimental validation.« less
  3. Gibbons, Sean M. (Ed.)
    ABSTRACT Microbial exponential growth is expected to occur infrequently in environments that have long periods of nutrient starvation punctuated by short periods of high nutrient flux. These conditions likely impose nongrowth states for microbes. However, nongrowth states are uncharacterized for the majority of environmental bacteria, especially in regard to exometabolite production. We compared exometabolites produced over stationary phase across three environmental bacteria: Burkholderia thailandensis E264 (ATCC 700388), Chromobacterium violaceum ATCC 31532, and Pseudomonas syringae pv. tomato DC3000 (ATCC BAA-871). We grew each strain in monoculture and investigated exometabolite dynamics from mid-exponential to stationary phases. We focused on exometabolites that weremore »released into the medium and accumulated over 45 h, including approximately 20 h of stationary phase. We also analyzed transcripts (transcriptome sequencing [RNA-seq]) to interpret exometabolite output. We found that the majority of exometabolites released were strain specific, with a subset of identified exometabolites involved in both central and secondary metabolism. Transcript analysis supported that exometabolites were released from intact cells, as various transporters had either increased or consistent transcripts through time. Interestingly, we found that succinate was one of the most abundant identifiable exometabolites for all strains and that each strain rerouted their metabolic pathways involved in succinate production during stationary phase. These results show that nongrowth states can be metabolically dynamic and that environmental bacteria can enrich a minimal environment with diverse chemical compounds as a consequence of growth and postgrowth maintenance in stationary phase. This work provides insights into microbial community interactions via exometabolites under conditions of growth cessation or limitation. IMPORTANCE Nongrowth states are common for bacteria that live in environments that are densely populated and predominantly nutrient exhausted, and yet these states remain largely uncharacterized in cellular metabolism and metabolite output. Here, we investigated and compared stationary-phase exometabolites and RNA transcripts for each of three environmental bacterial strains. We observed that diverse exometabolites were produced and provide evidence that these exometabolites accumulate over time through release by intact cells. Additionally, each bacterial strain had a characteristic exometabolite profile and exhibited dynamics in exometabolite composition. This work affirms that stationary phase is metabolically dynamic, with each strain tested creating a unique chemical signature in the extracellular space and altering metabolism in stationary phase. These findings set the stage for understanding how bacterial populations can support surrounding neighbors in environments with prolonged nutrient exhaustion through exometabolite-mediated interspecies interactions.« less
  4. In disturbance ecology, stability is composed of resistance to change and resilience towards recovery after the disturbance subsides. Two key microbial mechanisms that can support microbiome stability include dormancy and dispersal. Specifically, microbial populations that are sensitive to disturbance can be re-seeded by local dormant pools of viable and reactivated cells, or by immigrants dispersed from regional metacommunities. However, it is difficult to quantify the contributions of these mechanisms to stability without, first, distinguishing the active from inactive membership, and, second, distinguishing the populations recovered by local resuscitation from those recovered by dispersed immigrants. Here, we investigate the contributions ofmore »dormancy dynamics (activation and inactivation), and dispersal to soil microbial community resistance and resilience. We designed a replicated, 45-week time-series experiment to quantify the responses of the active soil microbial community to a thermal press disturbance, including unwarmed control mesocosms, disturbed mesocosms without dispersal, and disturbed mesocosms with dispersal after the release of the stressor. Communities changed in structure within one week of warming. Though the disturbed mesocosms did not fully recover within 29 weeks, resuscitation of thermotolerant taxa was key for community transition during the press, and both resuscitation of opportunistic taxa and immigration contributed to community resilience. Also, mesocosms with dispersal were more resilient than mesocosms without. This work advances the mechanistic understanding of how microbiomes respond to disturbances in their environment. This article is part of the theme issue ‘Conceptual challenges in microbial community ecology’.« less
  5. ABSTRACT Here, we report our educational approach and learner evaluations of the first 5 years of the Explorations in Data Analysis for Metagenomic Advances in Microbial Ecology (EDAMAME) workshop, held annually at Michigan State University’s Kellogg Biological Station from 2014 to 2018. We hope this information will be useful for others who want to organize computing-intensive workshops and will encourage quantitative skill development among microbiologists. IMPORTANCE High-throughput sequencing and related statistical and bioinformatic analyses have become routine in microbiology in the past decade, but there are few formal training opportunities to develop these skills. A weeklong workshop can offer sufficientmore »time for novices to become introduced to best computing practices and common workflows in sequence analysis. We report our experiences in executing such a workshop targeted to professional learners (graduate students, postdoctoral scientists, faculty, and research staff).« less
  6. ABSTRACT At any given time, only a subset of microbial community members are active in their environment. The others are in a state of dormancy, with strongly reduced metabolic rates. It is of interest to distinguish active and inactive microbial cells and taxa to understand their functional contributions to ecosystem processes and to understand shifts in microbial activity in response to change. Of the methods used to assess microbial activity-dormancy dynamics, 16S rRNA/rRNA gene amplicons (16S ratios) and active cell staining with 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) are two of the most common, yet each method has limitations. Given that inmore »situ activity-dormancy dynamics are proxied only by laboratory methods, further study is needed to assess the level of agreement and potential complementarity of these methods. We conducted two experiments investigating microbial activity in plant-associated soils. First, we treated corn field soil with phytohormones to simulate plant soil stress signaling, and second, we used rhizosphere soil from common bean plants exposed to drought or nutrient enrichment. Overall, the 16S ratio and CTC methods exhibited similar patterns of relative activity across treatments when treatment effects were large, and the instances in which they differed could be attributed to changes in community size (e.g., cell death or growth). Therefore, regardless of the method used to assess activity, we recommend quantifying community size to inform ecological interpretation. Our results suggest that the 16S ratio and CTC methods report comparable patterns of activity that can be applied to observe ecological dynamics over time, space, or experimental treatment. IMPORTANCE Although the majority of microorganisms in natural ecosystems are dormant, relatively little is known about the dynamics of the active and dormant microbial pools through both space and time. The limited knowledge of microbial activity-dormancy dynamics is in part due to uncertainty in the methods currently used to quantify active taxa. Here, we directly compared two of the most common methods (16S ratios and active cell staining) for estimating microbial activity in plant-associated soil and found that they were largely in agreement in the overarching patterns. Our results suggest that 16S ratios and active cell staining provide complementary information for measuring and interpreting microbial activity-dormancy dynamics in soils. They also support the idea that 16S rRNA/rRNA gene ratios have comparative value and offer a high-throughput, sequencing-based option for understanding relative changes in microbiome activity, as long as this method is coupled with quantification of community size.« less
  7. ABSTRACT Plasmids harbor transferable genes that contribute to the functional repertoire of microbial communities, yet their contributions to metagenomes are often overlooked. Environmental plasmids have the potential to spread antibiotic resistance to clinical microbial strains. In soils, high microbiome diversity and high variability in plasmid characteristics present a challenge for studying plasmids. To improve the understanding of soil plasmids, we present RefSoil+, a database containing plasmid sequences from 922 soil microorganisms. Soil plasmids were larger than other described plasmids, which is a trait associated with plasmid mobility. There was a weak relationship between chromosome size and plasmid size and nomore »relationship between chromosome size and plasmid number, suggesting that these genomic traits are independent in soil. We used RefSoil+ to inform the distributions of antibiotic resistance genes among soil microorganisms compared to those among nonsoil microorganisms. Soil-associated plasmids, but not chromosomes, had fewer antibiotic resistance genes than other microorganisms. These data suggest that soils may offer limited opportunity for plasmid-mediated transfer of described antibiotic resistance genes. RefSoil+ can serve as a reference for the diversity, composition, and host associations of plasmid-borne functional genes in soil, a utility that will be enhanced as the database expands. Our study improves the understanding of soil plasmids and provides a resource for assessing the dynamics of the genes that they carry, especially genes conferring antibiotic resistances. IMPORTANCE Soil-associated plasmids have the potential to transfer antibiotic resistance genes from environmental to clinical microbial strains, which is a public health concern. A specific resource is needed to aggregate the knowledge of soil plasmid characteristics so that the content, host associations, and dynamics of antibiotic resistance genes can be assessed and then tracked between the environment and the clinic. Here, we present RefSoil+, a database of soil-associated plasmids. RefSoil+ presents a contemporary snapshot of antibiotic resistance genes in soil that can serve as a reference as novel plasmids and transferred antibiotic resistances are discovered. Our study broadens our understanding of plasmids in soil and provides a community resource of important plasmid-associated genes, including antibiotic resistance genes.« less