- Award ID(s):
- 1749544
- PAR ID:
- 10225378
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Frontiers in Ecology and Evolution
- Volume:
- 9
- ISSN:
- 2296-701X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Detecting and understanding disturbance is a challenge in ecology that has grown more critical with global environmental change and the emergence of research on social–ecological systems. We identify three areas of research need: developing a flexible framework that incorporates feedback loops between social and ecological systems, anticipating whether a disturbance will change vulnerability to other environmental drivers, and incorporating changes in system sensitivity to disturbance in the face of global changes in environmental drivers. In the present article, we review how discoveries from the US Long Term Ecological Research (LTER) Network have influenced theoretical paradigms in disturbance ecology, and we refine a framework for describing social–ecological disturbance that addresses these three challenges. By operationalizing this framework for seven LTER sites spanning distinct biomes, we show how disturbance can maintain or alter ecosystem state, drive spatial patterns at landscape scales, influence social–ecological interactions, and cause divergent outcomes depending on other environmental changes.more » « less
-
Abstract The global impacts of climate change are evident in every marine ecosystem. On coral reefs, mass coral bleaching and mortality have emerged as ubiquitous responses to ocean warming, yet one of the greatest challenges of this epiphenomenon is linking information across scientific disciplines and spatial and temporal scales. Here we review some of the seminal and recent coral‐bleaching discoveries from an ecological, physiological, and molecular perspective. We also evaluate which data and processes can improve predictive models and provide a conceptual framework that integrates measurements across biological scales. Taking an integrative approach across biological and spatial scales, using for example hierarchical models to estimate major coral‐reef processes, will not only rapidly advance coral‐reef science but will also provide necessary information to guide decision‐making and conservation efforts. To conserve reefs, we encourage implementing mesoscale sanctuaries (thousands of km2) that transcend national boundaries. Such networks of protected reefs will provide reef connectivity, through larval dispersal that transverse thermal environments, and genotypic repositories that may become essential units of selection for environmentally diverse locations. Together, multinational networks may be the best chance corals have to persist through climate change, while humanity struggles to reduce emissions of greenhouse gases to net zero.
-
Abstract The health of coral reef benthic and fish communities is implicitly connected, yet typically studied and managed separately. By developing a coupled reef population model that connects coral populations and reef fish biomass through the habitat complexity that corals build and fish live among, we aim to address this gap by holistically quantifying ecological feedbacks and responses to ecological stressors. We explored the impacts of fishing effort in conjunction with three types of ecological disturbances as they propagated through a coral reef ecosystem: (1) a disturbance that disproportionately affected small, bio‐energetically vulnerable colonies, (2) a disturbance that predominantly affected large, mechanically vulnerable colonies, and (3) a disturbance that affected colonies of all sizes randomly. We found that joint coral and fish population recovery was fastest and most complete under events affecting small colonies, followed by recovery from disturbances affecting random sizes, and lastly large‐colony disturbances. These results suggest that the retention versus loss of large coral colonies with high reproductive potential critically influenced population recovery. Low fishing levels maintained fish and coral populations and allowed for recovery after disturbances, whereas high fishing levels prevented recovery due to greater fish‐dependent coral mortality. Finally, we tested various formulations of the relationship between coral size and habitat complexity (i.e., exponential, linear, logarithmic) that constrain fish carrying capacity. All formulations led to similar population projections in most disturbance scenarios, but there were exceptions where the timing and trajectory of recovery differed, such as faster and greater recovery potential when complexity is logarithmic with respect to coral size. These findings suggest that fishing and habitat complexity mediate the recovery of coral reef populations, emphasizing the importance of describing linkages between coral size distribution and reef habitat structure. Furthermore, our results highlight the utility of the coupled‐model framework for understanding and managing the impact of disturbances at ecosystem scales.
-
Abstract Ice cover plays a critical role in physical, biogeochemical, and ecological processes in lakes. Despite its importance, winter limnology remains relatively understudied. Here, we provide a primer on the predominant drivers of freshwater lake ice cover and the current methodologies used to study lake ice, including in situ and remote sensing observations, physical based models, and experiments. We highlight opportunities for future research by integrating these four disciplines to address key knowledge gaps in our understanding of lake ice dynamics in changing winters. Advances in technology, data integration, and interdisciplinary collaboration will allow the field to move toward developing global forecasts of lake ice cover for small to large lakes across broad spatial and temporal scales, quantifying ice quality and ice thickness, moving from binary to continuous ice records, and determining how winter ice conditions and quality impact ecosystem processes in lakes over winter. Ultimately, integrating disciplines will improve our ability to understand the impacts of changing winters on lake ice.
-
Watt, Michael (Ed.)Purpose of Review Outbreaks of tree-killing bark beetles have reached unprecedented levels in conifer forests in the northern hemisphere and are expected to further intensify due to climate change. In parts of Europe, bark beetle outbreaks and efforts to manage them have even triggered social unrests and political instability. These events have increasingly challenged traditional responses to outbreaks, and highlight the need for a more comprehensive management framework. Recent Findings Several synthesis papers on different aspects of bark beetle ecology and management exist. However, our understanding of outbreak drivers and impacts, principles of ecosystem management, governance, and the role of climate change in the dynamics of ecological and social systems has rapidly advanced in recent years. These advances are suggesting a reconsideration of previous management strategies. Summary We synthesize the state of knowledge on drivers and impacts of bark beetle outbreaks in Europe and propose a comprehensive context-dependent framework for their management. We illustrate our ideas for two contrasting societal objectives that represent the end-members of a continuum of forest management goals: wood and biomass production and the conservation of biodiversity and natural processes. For production forests, we propose a management approach addressing economic, social, ecological, infrastructural, and legislative aspects of bark beetle disturbances. In conservation forests, where non-intervention is the default option, we elaborate under which circumstances an active intervention is necessary, and whether such an intervention is in conflict with the objective to conserve biodiversity. Our approach revises the current management response to bark beetles in Europe and promotes an interdisciplinary social-ecological approach to dealing with disturbances.more » « less