skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Parameterizing Lognormal state space models using moment matching
Abstract In ecology, it is common for processes to be bounded based on physical constraints of the system. One common example is the positivity constraint, which applies to phenomena such as duration times, population sizes, and total stock of a system’s commodity. In this paper, we propose a novel method for parameterizing Lognormal state space models using an approach based on moment matching. Our method enforces the positivity constraint, allows for arbitrary mean evolution and variance structure, and has a closed-form Markov transition density which allows for more flexibility in fitting techniques. We discuss two existing Lognormal state space models and examine how they differ from the method presented here. We use 180 synthetic datasets to compare the forecasting performance under model misspecification and assess the estimation of precision parameters between our method and existing methods. We find that our models perform well under misspecification, and that fixing the observation variance both helps to improve estimation of the process variance and improves forecast performance. To test our method on a difficult problem, we compare the predictive performance of two Lognormal state space models in predicting the Leaf Area Index over a 151 day horizon by using a process-based ecosystem model to describe the temporal dynamics. We find that our moment matching model performs better than its competitor, and is better suited for intermediate predictive horizons. Overall, our study helps to inform practitioners about the importance of incorporating sensible dynamics when using models of complex systems to predict out-of-sample.  more » « less
Award ID(s):
2016264 1750113 1926388
PAR ID:
10432070
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Environmental and Ecological Statistics
Volume:
30
Issue:
3
ISSN:
1352-8505
Format(s):
Medium: X Size: p. 385-419
Size(s):
p. 385-419
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This paper develops inference methods for the iterated overidentified Generalized Method of Moments (GMM) estimator. We provide conditions for the existence of the iterated estimator and an asymptotic distribution theory, which allows for mild misspecification. Moment misspecification causes bias in conventional GMM variance estimators, which can lead to severely oversized hypothesis tests. We show how to consistently estimate the correct asymptotic variance matrix. Our simulation results show that our methods are properly sized under both correct specification and mild to moderate misspecification. We illustrate the method with an application to the model of Acemoglu, Johnson, Robinson, and Yared (2008). 
    more » « less
  2. Inverse probability of treatment weighting (IPTW), which has been used to estimate average treatment effects (ATE) using observational data, tenuously relies on the positivity assumption and the correct specification of the treatment assignment model, both of which are problematic assumptions in many observational studies. Various methods have been proposed to overcome these challenges, including truncation, covariate‐balancing propensity scores, and stable balancing weights. Motivated by an observational study in spine surgery, in which positivity is violated and the true treatment assignment model is unknown, we present the use of optimal balancing by kernel optimal matching (KOM) to estimate ATE. By uniformly controlling the conditional mean squared error of a weighted estimator over a class of models, KOM simultaneously mitigates issues of possible misspecification of the treatment assignment model and is able to handle practical violations of the positivity assumption, as shown in our simulation study. Using data from a clinical registry, we apply KOM to compare two spine surgical interventions and demonstrate how the result matches the conclusions of clinical trials that IPTW estimates spuriously refute. 
    more » « less
  3. We present a non‐Gaussian ensemble data assimilation method based on the maximum‐likelihood ensemble filter, which allows for any combination of Gaussian, lognormal, and reverse lognormal errors in both the background and the observations. The technique is fully nonlinear, does not require a tangent linear model, and uses a Hessian preconditioner to minimise the cost function efficiently in ensemble space. When the Gaussian assumption is relaxed, the results show significant improvements in the analysis skill within two atmospheric toy models, and the performance of data assimilation systems for (semi)bounded variables is expected to improve. 
    more » « less
  4. Current deep neural network approaches for camera pose estimation rely on scene structure for 3D motion estimation, but this decreases the robustness and thereby makes cross-dataset generalization difficult. In contrast, classical approaches to structure from motion estimate 3D motion utilizing optical flow and then compute depth. Their accuracy, however, depends strongly on the quality of the optical flow. To avoid this issue, direct methods have been proposed, which separate 3D motion from depth estimation, but compute 3D motion using only image gradients in the form of normal flow. In this paper, we introduce a network NFlowNet, for normal flow estimation which is used to enforce robust and direct constraints. In particular, normal flow is used to estimate relative camera pose based on the cheirality (depth positivity) constraint. We achieve this by formulating the optimization problem as a differentiable cheirality layer, which allows for end-to-end learning of camera pose. We perform extensive qualitative and quantitative evaluation of the proposed DiffPoseNet’s sensitivity to noise and its generalization across datasets. We compare our approach to existing state-of-the-art methods on KITTI, TartanAir, and TUM-RGBD datasets. 
    more » « less
  5. Objective: Accurate, non-invasive methods for estimating joint and muscle physiological states have the potential to greatly enhance control of wearable devices during real-world ambulation. Traditional modeling approaches and current estimation methods used to predict muscle dynamics often rely on complex equipment or computationally intensive simulations and have difficulty estimating across a broad spectrum of tasks or subjects. Methods: Our approach used deep learning (DL) models trained on kinematic inputs to estimate internal physiological states at the knee, including moment, power, velocity, and force. We assessed each model's performance against ground truth labels from both a commonly used, standard OpenSim musculoskeletal model without EMG (static optimization) and an EMG-informed method (CEINMS), across 28 different cyclic and noncyclic tasks. Results: EMG provided no benefit for joint moment/power estimation (e.g., biological moment), but was critical for estimating muscle states. Models trained with EMG-informed labels but without EMG as an input to the DL system significantly outperformed models trained without EMG (e.g., 33.7% improvement for muscle moment estimation) (p < 0.05). Models that included EMG-informed labels and EMG as a model input demonstrated even higher performance (49.7% improvement for muscle moment estimation) (p < 0.05), but require the availability of EMG during model deployment, which may be impractical. Conclusion/Significance: While EMG information is not necessary for estimating joint level states, there is a clear benefit during muscle level state estimation. Our results demonstrate excellent tracking of these states with EMG included only during training, highlighting the practicality of real-time deployment of this approach. 
    more » « less