skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1750380

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Recent works suggest that striking a balance between maximizing idea stimulation and minimizing idea redundancy can elevate novel idea generation performances in self-organizing social networks. We explore whether dispersing the visibility of high-performing idea generators can help achieve such a trade-off. We employ popularity signals (follower counts) of participants as an external source of variation in network structures, which we control across four conditions in a randomized setting. We observe that popularity signals influence inspiration-seeking ties, partly by biasing people’s perception of their peers’ novel idea-generation performances. Networks that partially disperse the top ideators’ visibility using this external signal show reduced idea redundancy and elevated idea-generation performances. However, extreme dispersal leads to inferior performances by narrowing the range of idea stimulation. Our work holds future-of-work implications for elevating idea generation performances of people. 
    more » « less
  2. Abstract A person’s appearance, identity, and other nonverbal cues can substantially influence how one is perceived by a negotiation counterpart, potentially impacting the outcome of the negotiation. With recent advances in technology, it is now possible to alter such cues through real-time video communication. In many cases, a person’s physical presence can explicitly be replaced by 2D/3D representations in live interactive media. In other cases, technologies such as deepfake can subtly and implicitly alter many nonverbal cues—including a person’s appearance and identity—in real time. In this article, we look at some state-of-the-art technological advances that can enable such explicit and implicit alterations of nonverbal cues. We also discuss the implications of such technology for the negotiation landscape and highlight ethical considerations that warrant deep, ongoing attention from stakeholders. 
    more » « less
  3. Currently doctors rely on tools such as the Unified Parkinson’s Disease Rating Scale (MDS-UDPRS) and the Scale for the Assessment and Rating of Ataxia (SARA) to make diagnoses for movement disorders based on clinical observations of a patient’s motor movement. Observation-based assessments however are inherently subjective and can differ by person. Moreover, different movement disorders show overlapping symptoms, challenging neurologists to make a correct diagnosis based on eyesight alone. In this work, we create an intelligent interface to highlight movements and gestures that are indicative of a movement disorder to observing doctors. First, we analyzed the walking patterns of 43 participants with Parkinson’s Disease (PD), 60 participants with ataxia, and 52 participants with no movement disorder to find ten metrics that can be used to distinguish PD from ataxia. Next, we designed an interface that provides context to the gestures that are relevant to a movement disorder diagnosis. Finally, we surveyed two neurologists (one who specializes in PD and the other who specializes in ataxia) on how useful this interface is for making a diagnosis. Our results not only showcase additional metrics that can be used to evaluate movement disorders quantitatively but also outline steps to be taken when designing an interface for these kinds of diagnostic tasks. 
    more » « less
  4. We present a user-centric validation of a teleneurology platform, assessing its effectiveness in conveying screening information, facilitating user queries, and offering resources to enhance user empowerment. This validation process is implemented in the setting of Parkinson's disease (PD), in collaboration with a neurology department of a major medical center in the USA. Our intention is that with this platform, anyone globally with a webcam and microphone-equipped computer can carry out a series of speech, motor, and facial mimicry tasks. Our validation method demonstrates to users a mock PD risk assessment and provides access to relevant resources, including a chatbot driven by GPT, locations of local neurologists, and actionable and scientifically-backed PD prevention and management recommendations. We share findings from 91 participants (48 with PD, 43 without) aimed at evaluating the user experience and collecting feedback. Our framework was rated positively by 80.85% (standard deviation ± 8.92%) of the participants, and it achieved an above-average 70.42 (standard deviation ± 13.85) System-Usability-Scale (SUS) score. We also conducted a thematic analysis of open-ended feedback to further inform our future work. When given the option to ask any questions to the chatbot, participants typically asked for information about neurologists, screening results, and the community support group. We also provide a roadmap of how the knowledge generated in this paper can be generalized to screening frameworks for other diseases through designing appropriate recording environments, appropriate tasks, and tailored user-interfaces. 
    more » « less
  5. We present a conversational agent designed to provide realistic conversational practice to older adults at risk of isolation or social anxiety, and show the results of a content analysis on a corpus of data collected from experiments with elderly patients interacting with our system. The conversational agent, represented by a virtual avatar, is designed to hold multiple sessions of casual conversation with older adults. Throughout each interaction, the system analyzes the prosodic and nonverbal behavior of users and provides feedback to the user in the form of periodic comments and suggestions on how to improve. Our avatar is unique in its ability to hold natural dialogues on a wide range of everyday topics—27 topics in three groups, developed in collaboration with a team of gerontologists. The three groups vary in “degrees of intimacy,” and as such in degrees of cognitive difficulty for the user. After collecting data from nine participants who interacted with the avatar for seven to nine sessions over a period of 3 to 4 weeks, we present results concerning dialogue behavior and inferred sentiment of the users. Analysis of the dialogues reveals correlations such as greater elaborateness for more difficult topics, increasing elaborateness with successive sessions, stronger sentiments in topics concerned with life goals rather than routine activities, and stronger self-disclosure for more intimate topics. In addition to their intrinsic interest, these results also reflect positively on the sophistication and practical applicability of our dialogue system. 
    more » « less
  6. Since online discussion platforms can limit the perception of social cues, effective collaboration over videochat requires additional attention to conversational skills. However, self-affirmation and defensive bias theories indicate that feedback may appear confrontational, especially when users are not motivated to incorporate them. We develop a feedback chatbot that employs Motivational Interviewing (MI), a directive counseling method that encourages commitment to behavior change, with the end goal of improving the user's conversational skills. We conduct a within-subject study with 21 participants in 8 teams to evaluate our MI-agent 'MIA' and a non-MI-agent 'Roboto'. After interacting with an agent, participants are tasked with conversing over videochat to evaluate candidate résumés for a job circular. Our quantitative evaluation shows that the MI-agent effectively motivates users, improves their conversational skills, and is likable. Through a qualitative lens, we present the strategies and the cautions needed to fulfill individual and team goals during group discussions. Our findings reveal the potential of the MI technique to improve collaboration and provide examples of conversational tactics important for optimal discussion outcomes. 
    more » « less
  7. There has been a rise in automated technologies to screen potential job applicants through affective signals captured from video-based interviews. These tools can make the interview process scalable and objective, but they often provide little to no information of how the machine learning model is making crucial decisions that impacts the livelihood of thousands of people. We built an ensemble model – by combining Multiple-Instance-Learning and Language-Modeling based models – that can predict whether an interviewee should be hired or not. Using both model-specific and model-agnostic interpretation techniques, we can decipher the most informative time-segments and features driving the model's decision making. Our analysis also shows that our models are significantly impacted by the beginning and ending portions of the video. Our model achieves 75.3% accuracy in predicting whether an interviewee should be hired on the ETS Job Interview dataset. Our approach can be extended to interpret other video-based affective computing tasks like analyzing sentiment, measuring credibility, or coaching individuals to collaborate more effectively in a team. 
    more » « less
  8. In this work, from YouTube News-show multimodal dataset with dyadic speakers having heated discussions, we analyze the toxicity through audio-visual signals. Firstly, as different speakers may contribute differently towards the toxicity, we propose a speaker-wise toxicity score revealing individual proportionate contribution. As discussions with disagreements may reflect some signals of toxicity, in order to identify discussions needing more attention we categorize discussions into binary high-low toxicity levels. By analyzing visual features, we show that the levels correlate with facial expressions as Upper Lid Raiser (associated with ‘surprise’), Dimpler (associated with ‘contempť), and Lip Corner Depressor (associated with ‘disgust’) remain statistically significant in separating high-low intensities of disrespect. Secondly, we investigate the impact of audio-based features such as pitch and intensity that can significantly elicit disrespect, and utilize the signals in classifying disrespect and non-disrespect samples by applying logistic regression model achieving 79.86% accuracy. Our findings shed light on the potential of utilizing audio-visual signals in adding important context towards understanding toxic discussions. 
    more » « less
  9. null (Ed.)