skip to main content


Search for: All records

Award ID contains: 1750865

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We have developed a differentiable programming framework for truncated hierarchical B-splines (THB-splines), which can be used for several applications in geometry modeling, such as surface fitting and deformable image registration, and can be easily integrated with geometric deep learning frameworks. Differentiable programming is a novel paradigm that enables an algorithm to be differentiated via automatic differentiation, i.e., using automatic differentiation to compute the derivatives of its outputs with respect to its inputs or parameters. Differentiable programming has been used extensively in machine learning for obtaining gradients required in optimization algorithms such as stochastic gradient descent (SGD). While incorporating differentiable programming with traditional functions is straightforward, it is challenging when the functions are complex, such as splines. In this work, we extend the differentiable programming paradigm to THB-splines. THB-splines offer an efficient approach for complex surface fitting by utilizing a hierarchical tensor structure of B-splines, enabling local adaptive refinement. However, this approach brings challenges, such as a larger computational overhead and the non-trivial implementation of automatic differentiation and parallel evaluation algorithms. We use custom kernel functions for GPU acceleration in forward and backward evaluation that are necessary for differentiable programming of THB-splines. Our approach not only improves computational efficiency but also significantly enhances the speed of surface evaluation compared to previous methods. Our differentiable THB-splines framework facilitates faster and more accurate surface modeling with local refinement, with several applications in CAD and isogeometric analysis.

     
    more » « less
  2. Abstract

    Estimating a patient‐specific computational model's parameters relies on data that is often unreliable and ill‐suited for a deterministic approach. We develop an optimization‐based uncertainty quantification framework for probabilistic model tuning that discovers model inputs distributions that generate target output distributions. Probabilistic sampling is performed using a surrogate model for computational efficiency, and a general distribution parameterization is used to describe each input. The approach is tested on seven patient‐specific modeling examples using CircAdapt, a cardiovascular circulatory model. Six examples are synthetic, aiming to match the output distributions generated using known reference input data distributions, while the seventh example uses real‐world patient data for the output distributions. Our results demonstrate the accurate reproduction of the target output distributions, with a correct recreation of the reference inputs for the six synthetic examples. Our proposed approach is suitable for determining the parameter distributions of patient‐specific models with uncertain data and can be used to gain insights into the sensitivity of the model parameters to the measured data.

     
    more » « less
  3. Free, publicly-accessible full text available February 1, 2025
  4. Free, publicly-accessible full text available October 28, 2024
  5. null (Ed.)