skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1751087

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Google Search is an important way that people seek information about politics [8], and Google states that it is “committed to providing timely and authoritative information on Google Search to help voters understand, navigate, and participate in democratic processes.”1 This paper studies the extent to which government-maintained web domains are represented in the online electoral information environment, as captured through 3.45 Google Search result pages collected during the 2022 US midterm elections for 786 locations across the United States. Focusing on state, county, and local government domains that provide locality-specific information, we study not only the extent to which these sources appear in organic search results, but also the extent to which these sources are correctly targeted to their respective constituents. We label misalignment between the geographic area that non-federal domains serve and the locations for which they appear in search results as algorithmic mistargeting, a subtype of algorithmic misjudgement in which the search algorithm targets locality-specific information to users in different (incorrect) locations. In the context of the 2022 US midterm elections, we find that 71% of all occurrences of state, county, and local government sources were mistargeted, with some domains appearing disproportionately often among organic results despite providing locality-specific information that may not be relevant to all voters. However, we also find that mistargeting often occurs in low ranks. We conclude by considering the potential consequences of extensive mistargeting of non-federal government sources and argue that ensuring the correct targeting of these sources to their respective constituents is a critical part of Google’s role in facilitating access to authoritative and locally-relevant electoral information. 
    more » « less
  2. Analysis of people’s web searches and visited websites suggests that it is more likely that they are choosing to engage with partisan or unreliable news than that they are being unduly exposed to it by search-engine algorithms. 
    more » « less
  3. How do Google Search results change following an impactful real-world event, such as the U.S. Supreme Court decision on June 24, 2022 to overturn Roe v. Wade? And what do they tell us about the nature of event-driven content, generated by various participants in the online information environment? In this paper, we present a dataset of more than 1.74 million Google Search results pages collected between June 24 and July 17, 2022, intended to capture what Google Search surfaced in response to queries about this event of national importance. These search pages were collected for 65 locations in 13 U.S. states, a mix of red, blue, and purple states, with respect to their voting patterns. We describe the process of building a set of circa 1,700 phrases used for searching Google, how we gathered the search results for each location, and how these results were parsed to extract information about the most frequently encountered web domains. We believe that this dataset, which comprises raw data (search results as HTML files) and processed data (extracted links organized as CSV files) can be used to answer research questions that are of interest to computational social scientists as well as communication and media studies scholars. 
    more » « less
  4. In February 2021, Google Search added a new interface feature to support the evaluation of web domains, known as the “About this result” feature. A prominent part of this feature is a snippet of text pulled automatically from Wikipedia, if a Wiki page for the web domain exists. While conducting large-scale audits of Google Search, we discovered that less than 40% of web domains shown in Google Search results contain a Wikipedia page. Then, we retrieved their Wikidata entries and looked at the extent they incorporate features related to W3C credibility signals. The lack of information for many signals points out to avenues for expanding Wikidata coverage. 
    more » « less
  5. This study assesses the awareness and perceived utility of two features Google Search introduced in February 2021: “About this result” and “More about this page”. Google stated that the goal of these features is to help users vet unfamiliar web domains (or sources). We investigated whether the features were sufficiently prominent to be detected by frequent users of Google Search, and their perceived utility for making credibility judgments of sources, in one-on-one user studies with 25 undergraduate college students, who identify as frequent users of Google Search. Our results indicate a lack of adoption or awareness of these features by our participants and neutral-positive perceptions of their utility in evaluating web sources. We also examined the perceived usefulness of nine other domain credibility signals collected from the W3C. 
    more » « less
  6. De Cristofaro, Emiliano; Nakov, Preslav (Ed.)
    Google’s reviewed claims feature was an early attempt to incorporate additional credibility signals from fact-checking onto the search results page. The feature, which appeared when users searched for the name of a subset of news publishers, was criticized by dozens of publishers for its errors and alleged anticonservative bias. By conducting an audit of news publisher search results and focusing on the critiques of publishers, we find that there is a lack of consensus between fact-checking ecosystem stakeholders that may be important to address in future iterations of public facing fact-checking tools. In particular, we find that a lack of transparency coupled with a lack of consensus on what makes a fact-check relevant to a news article led to the breakdown of reviewed claims. 
    more » « less
  7. When one searches for political candidates on Google, a panel composed of recent news stories, known as Top stories, is commonly shown at the top of the search results page. These stories are selected by an algorithm that chooses from hundreds of thousands of articles published by thousands of news publishers. In our previous work, we identified 56 news sources that contributed 2/3 of all Top stories for 30 political candidates running in the primaries of 2020 US Presidential Election. In this paper, we survey US voters to elicit their familiarity and trust with these 56 news outlets. We find that some of the most frequent outlets are not familiar to all voters (e.g. The Hill or Politico), or particularly trusted by voters of any political stripes (e.g. Washington Examiner or The Daily Beast). Why then, are such sources shown so frequently in Top stories? We theorize that Google is sampling news articles from sources with different political leanings to offer a balanced coverage. This is reminiscent of the so-called “fairness doctrine” (1949-1987) policy in the United States that required broadcasters (radio or TV stations) to air contrasting views about controversial matters. Because there are fewer right-leaning publications than center or left-leaning ones, in order to maintain this “fair” balance, hyper-partisan far-right news sources of low trust receive more visibility than some news sources that are more familiar to and trusted by the public. 
    more » « less
  8. Choosing the political party nominees, who will appear on the ballot for the US presidency, is a long process that starts two years before the general election. The news media plays a particular role in this process by continuously covering the state of the race. How can this news coverage be characterized? Given that there are thousands of news organizations, but each of us is exposed to only a few of them, we might be missing most of it. Online news aggregators, which aggregate news stories from a multitude of news sources and perspectives, could provide an important lens for the analysis. One such aggregator is Google’s Top stories, a recent addition to Google’s search result page. For the duration of 2019, we have collected the news headlines that Google Top stories has displayed for 30 candidates of both US political parties. Our dataset contains 79,903 news story URLs published by 2,168 unique news sources. Our analysis indicates that despite this large number of news sources, there is a very skewed distribution of where the Top stories are originating, with a very small number of sources contributing the majority of stories. We are sharing our dataset1 so that other researchers can answer questions related to algorithmic curation of news as well as media agenda setting in the context of political elections. 
    more » « less
  9. Search engines, by ranking a few links ahead of million others based on opaque rules, open themselves up to criticism of bias. Previous research has focused on measuring political bias of search engine algorithms to detect possible search engine manipulation effects on voters or unbalanced ideological representation in search results. Insofar that these concerns are related to the principle of fairness, this notion of fairness can be seen as explicitly oriented toward election candidates or political processes and only implicitly oriented toward the public at large. Thus, we ask the following research question: how should an auditing framework that is explicitly centered on the principle of ensuring and maximizing fairness for the public (i.e., voters) operate? To answer this question, we qualitatively explore four datasets about elections and politics in the United States: 1) a survey of eligible U.S. voters about their information needs ahead of the 2018 U.S. elections, 2) a dataset of biased political phrases used in a large-scale Google audit ahead of the 2018 U.S. election, 3) Google’s “related searches” phrases for two groups of political candidates in the 2018 U.S. election (one group is composed entirely of women), and 4) autocomplete suggestions and result pages for a set of searches on the day of a statewide election in the U.S. state of Virginia in 2019. We find that voters have much broader information needs than the search engine audit literature has accounted for in the past, and that relying on political science theories of voter modeling provides a good starting point for informing the design of voter-centered audits. 
    more » « less