skip to main content

Search for: All records

Award ID contains: 1751278

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Recommender systems are poised at the interface between stakeholders: for example, job applicants and employers in the case of recommendations of employment listings, or artists and listeners in the case of music recommendation. In such multisided platforms, recommender systems play a key role in enabling discovery of products and information at large scales. However, as they have become more and more pervasive in society, the equitable distribution of their benefits and harms have been increasingly under scrutiny, as is the case with machine learning generally. While recommender systems can exhibit many of the biases encountered in other machine learning settings, the intersection of personalization and multisidedness makes the question of fairness in recommender systems manifest itself quite differently. In this article, we discuss recent work in the area of multisided fairness in recommendation, starting with a brief introduction to core ideas in algorithmic fairness and multistakeholder recommendation. We describe techniques for measuring fairness and algorithmic approaches for enhancing fairness in recommendation outputs. We also discuss feedback and popularity effects that can lead to unfair recommendation outcomes. Finally, we introduce several promising directions for future research in this area.

  2. Current practice for evaluating recommender systems typically focuses on point estimates of user-oriented effectiveness metrics or business metrics, sometimes combined with additional metrics for considerations such as diversity and novelty. In this paper, we argue for the need for researchers and practitioners to attend more closely to various distributions that arise from a recommender system (or other information access system) and the sources of uncertainty that lead to these distributions. One immediate implication of our argument is that both researchers and practitioners must report and examine more thoroughly the distribution of utility between and within different stakeholder groups. However, distributions of various forms arise in many more aspects of the recommender systems experimental process, and distributional thinking has substantial ramifications for how we design, evaluate, and present recommender systems evaluation and research results. Leveraging and emphasizing distributions in the evaluation of recommender systems is a necessary step to ensure that the systems provide appropriate and equitably-distributed benefit to the people they affect.
    Free, publicly-accessible full text available August 1, 2024
  3. A number of information retrieval studies have been done to assess which statistical techniques are appropriate for comparing systems. However, these studies are focused on TREC-style experiments, which typically have fewer than 100 topics. There is no similar line of work for large search and recommendation experiments; such studies typically have thousands of topics or users and much sparser relevance judgements, so it is not clear if recommendations for analyzing traditional TREC experiments apply to these settings. In this paper, we empirically study the behavior of significance tests with large search and recommendation evaluation data. Our results show that the Wilcoxon and Sign tests show significantly higher Type-1 error rates for large sample sizes than the bootstrap, randomization and t-tests, which were more consistent with the expected error rate. While the statistical tests displayed differences in their power for smaller sample sizes, they showed no difference in their power for large sample sizes. We recommend the sign and Wilcoxon tests should not be used to analyze large scale evaluation results. Our result demonstrate that with Top-\(N\) recommendation and large search evaluation data, most tests would have a 100% chance of finding statistically significant results. Therefore, the effect size should bemore »used to determine practical or scientific significance.« less
    Free, publicly-accessible full text available July 23, 2024
  4. Users of search systems often reformulate their queries by adding query terms to reflect their evolving information need or to more precisely express their information need when the system fails to surface relevant content. Analyzing these query reformulations can inform us about both system and user behavior. In this work, we study a special category of query reformulations that involve specifying demographic group attributes, such as gender, as part of the reformulated query (e.g., “olympic 2021 soccer results” → “olympic 2021 women‘s soccer results”). There are many ways a query, the search results, and a demographic attribute such as gender may relate, leading us to hypothesize different causes for these reformulation patterns, such as under-representation on the original result page or based on the linguistic theory of markedness. This paper reports on an observational study of gender-specializing query reformulations—their contexts and effects—as a lens on the relationship between system results and gender, based on large-scale search log data from Bing. We find that these reformulations sometimes correct for and other times reinforce gender representation on the original result page, but typically yield better access to the ultimately-selected results. The prevalence of these reformulations—and which gender they skew towards—differ by topicalmore »context. However, we do not find evidence that either group under-representation or markedness alone adequately explains these reformulations. We hope that future research will use such reformulations as a probe for deeper investigation into gender (and other demographic) representation on the search result page.« less
    Free, publicly-accessible full text available July 23, 2024
  5. Information access research (and development) sometimes makes use of gender, whether to report on the demographics of participants in a user study, as inputs to personalized results or recommendations, or to make systems gender-fair, amongst other purposes. This work makes a variety of assumptions about gender, however, that are not necessarily aligned with current understandings of what gender is, how it should be encoded, and how a gender variable should be ethically used. In this work, we present a systematic review of papers on information retrieval and recommender systems that mention gender in order to document how gender is currently being used in this field. We find that most papers mentioning gender do not use an explicit gender variable, but most of those that do either focus on contextualizing results of model performance, personalizing a system based on assumptions of user gender, or auditing a model’s behavior for fairness or other privacy-related issues. Moreover, most of the papers we review rely on a binary notion of gender, even if they acknowledge that gender cannot be split into two categories. We connect these findings with scholarship on gender theory and recent work on gender in human-computer interaction and natural language processing.more »We conclude by making recommendations for ethical and well-grounded use of gender in building and researching information access systems.« less
    Free, publicly-accessible full text available March 19, 2024
  6. Information access systems, such as search and recommender systems, often use ranked lists to present results believed to be relevant to the user’s information need. Evaluating these lists for their fairness along with other traditional metrics provide a more complete understanding of an information access system’s behavior beyond accuracy or utility constructs. To measure the (un)fairness of rankings, particularly with respect to protected group(s) of producers or providers, several metrics have been proposed in the last several years. However, an empirical and comparative analyses of these metrics showing the applicability to specific scenario or real data, conceptual similarities, and differences is still lacking. We aim to bridge the gap between theoretical and practical application of these metrics. In this paper we describe several fair ranking metrics from the existing literature in a common notation, enabling direct comparison of their approaches and assumptions, and empirically compare them on the same experimental setup and data sets in the context of three information access tasks. We also provide a sensitivity analysis to assess the impact of the design choices and parameter settings that go in to these metrics and point to additional work needed to improve fairness measurement.
  7. Music is an important part of childhood development, with online music listening platforms being a significant channel by which children consume music. Children’s offline music listening behavior has been heavily researched, yet relatively few studies explore how their behavior manifests online. In this paper, we use data from LastFM 1 Billion and the Spotify API to explore online music listening behavior of children, ages 6–17, using education levels as lenses for our analysis. Understanding the music listening behavior of children can be used to inform the future design of recommender systems.
  8. In this position paper, we argue for the need to investigate if and how gender stereotypes manifest in search and recommender this http URL a starting point, we particularly focus on how these systems may propagate and reinforce gender stereotypes through their results in learning environments, a context where teachers and children in their formative stage regularly interact with these systems. We provide motivating examples supporting our concerns and outline an agenda to support future research addressing the phenomena.
  9. There is increasing attention to evaluating the fairness of search system ranking decisions. These metrics often consider the membership of items to particular groups, often identified using protected attributes such as gender or ethnicity. To date, these metrics typically assume the availability and completeness of protected attribute labels of items. However, the protected attributes of individuals are rarely present, limiting the application of fair ranking metrics in large scale systems. In order to address this problem, we propose a sampling strategy and estimation technique for four fair ranking metrics. We formulate a robust and unbiased estimator which can operate even with very limited number of labeled items. We evaluate our approach using both simulated and real world data. Our experimental results demonstrate that our method can estimate this family of fair ranking metrics and provides a robust, reliable alternative to exhaustive or random data annotation.
  10. Collaborative filtering algorithms find useful patterns in rating and consumption data and exploit these patterns to guide users to good items. Many of these patterns reflect important real-world phenomena driving interactions between the various users and items; other patterns may be irrelevant or reflect undesired discrimination, such as discrimination in publishing or purchasing against authors who are women or ethnic minorities. In this work, we examine the response of collaborative filtering recommender algorithms to the distribution of their input data with respect to one dimension of social concern, namely content creator gender. Using publicly available book ratings data, we measure the distribution of the genders of the authors of books in user rating profiles and recommendation lists produced from this data. We find that common collaborative filtering algorithms tend to propagate at least some of each user’s tendency to rate or read male or female authors into their resulting recommendations, although they differ in both the strength of this propagation and the variance in the gender balance of the recommendation lists they produce. The data, experimental design, and statistical methods are designed to be reusable for studying potentially discriminatory social dimensions of recommendations in other domains and settings as well.