Using high-brilliance high-energy synchrotron X-ray radiation, for the first time the total scattering of a thin organic glass film deposited on a strongly scattering inorganic substrate has been measured in transmission mode. The organic thin film was composed of the weakly scattering pharmaceutical substance indomethacin in the amorphous state. The film was 130 µm thick atop a borosilicate glass substrate of equal thickness. The atomic pair distribution function derived from the thin-film measurement is in excellent agreement with that from bulk measurements. This ability to measure the total scattering of amorphous organic thin films in transmission will enable accurate in situ structural studies for a wide range of materials. 
                        more » 
                        « less   
                    
                            
                            Electrochemistry of Thin Films with In Situ/Operando Grazing Incidence X‐Ray Scattering: Bypassing Electrolyte Scattering for High Fidelity Time Resolved Studies
                        
                    
    
            Abstract Electroactive polymer thin films undergo repeated reversible structural change during operation in electrochemical applications. While synchrotron X‐ray scattering is powerful for the characterization of stand‐alone and ex situ organic thin films, in situ/operando structural characterization has been underutilized—in large part due to complications arising from supporting electrolyte scattering. This has greatly hampered the development of application relevant structure property relationships. Therefore, a new methodology for in situ/operando X‐ray characterization that separates the incident and scattered X‐ray beam path from the electrolyte is developed. As a proof of concept, the operando structural characterization of weakly‐scattering, organic mixed conducting thin films in an aqueous electrolyte environment is demonstrated, accessing previously unexplored changes in the π‐π peak and diffuse scatter, while capturing the solvent swollen thin film structure which is inaccessible in previous ex situ studies. These in situ/operando measurements improve the sensitivity to structural changes, capturing minute changes not possible ex situ, and have multimodal potential such as combined Raman measurements that also serve to validate the true in situ/operando conditions of the cell. Finally, new directions enabled by this in situ/operando cell design are examined and state of the art measurements are compared. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1751308
- PAR ID:
- 10449753
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Small
- Volume:
- 17
- Issue:
- 42
- ISSN:
- 1613-6810
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The structure and packing of organic mixed ionic–electronic conductors have an especially significant effect on transport properties. In operating devices, this structure is not fixed but is responsive to changes in electrochemical potential, ion intercalation, and solvent swelling. Toward this end, the steady‐state and transient structure of the model organic mixed conductor, poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), is characterized using multimodal time‐resolved operando techniques. Steady‐state operando X‐ray scattering reveals a doping‐induced lamellar expansion of 1.6 Å followed by 0.4 Å relaxation at high doping levels. Time‐resolved operando X‐ray scattering reveals asymmetric rates of lamellar structural change during doping and dedoping that do not directly depend on potential or charging transients. Time‐resolved spectroscopy establishes a link between structural transients and the complex kinetics of electronic charge carrier subpopulations, in particular the polaron–bipolaron equilibrium. These findings provide insight into the factors limiting the response time of organic mixed‐conductor‐based devices, and present the first real‐time observation of the structural changes during doping and dedoping of a conjugated polymer system via X‐ray scattering.more » « less
- 
            Solution processing techniques are often used to enhance intra and interchain order in semiconducting conjugated polymer thin films used in the active layer of organic optoelectronic devices. We investigate the nanomechanical properties of conjugated polymer thin films arising from solution processing techniques. We find that Young’s Modulus data measured by AM-FM AFM can detect additional changes in film properties not discernible by other commonly used bulk thin-film characterization techniques. For PBDB-T-SF, we detect an increase in molecular order that is not noticable by UV–visible absorption spectroscopy, X-ray diffraction or nanoindentation. PCDTBT, the most amorphous of the polymers studied, shows no changes in absorption or X-ray diffraction data, yet clear changes in Young’s Modulus were detected by AFM. Our study demonstrates the applicability of nanomechanical measurements for characterizing local structural variations in conjugated polymer films. This work is relevant to ongoing efforts to control and understand the complex structure-property-processing relationships of conjugated polymer thin films.more » « less
- 
            We report the molecular beam epitaxy of Bi1−xSbx thin films (0 ≤ x ≤ 1) on sapphire (0001) substrates using a thin (Bi,Sb)2Te3 buffer layer. The characterization of the films using reflection high energy diffraction, x-ray diffraction, atomic force microscopy, and scanning transmission electron microscopy reveals the epitaxial growth of films of reasonable structural quality. This is further confirmed via x-ray diffraction pole figures that determine the epitaxial registry between the thin film and the substrate. We further investigate the microscopic structure of thin films via Raman spectroscopy, demonstrating how the vibrational modes vary as the composition changes and discussing the implications for the crystal structure. We also characterize the samples using electrical transport measurements.more » « less
- 
            Abstract Nanostructured materials with high surface area and low coordinated atoms present distinct intrinsic properties from their bulk counterparts. However, nanomaterials’ nucleation/growth mechanism during the synthesis process and the changes of the nanomaterials in the working state are still not thoroughly studied. As two indispensable methods, X‐ray absorption spectroscopy (XAS) provides nanomaterials’ electronic structure and coordination environment, while small‐angle X‐ray scattering (SAXS) offers structural properties and morphology information. A combination of in situ/operando XAS and SAXS provides high temporal and spatial resolution to monitor the evolution of nanomaterials. This review gives a brief introduction to in situ/operando SAXS/XAS cells. In addition, the application of in situ/operando XAS and SAXS in preparing nanomaterials and studying changes of working nanomaterials are summarized.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
