skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1751402

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Instance segmentation, which seeks to obtain both class and instance labels for each pixel in the input image, is a challenging task in computer vision. State-ofthe-art algorithms often employ a search-based strategy, which first divides the output image with a regular grid and generate proposals at each grid cell, then the proposals are classified and boundaries refined. In this paper, we propose a novel algorithm that directly utilizes a fully convolutional network (FCN) to predict instance labels. Specifically, we propose a variational relaxation of instance segmentation as minimizing an optimization functional for a piecewise-constant segmentation problem, which can be used to train an FCN end-to-end. It extends the classical Mumford-Shah variational segmentation algorithm to be able to handle the permutation-invariant ground truth in instance segmentation. Experiments on PASCAL VOC 2012 and the MSCOCO 2017 dataset show that the proposed approach efficiently tackles the instance segmentation task. The source code and trained models are released at https://github.com/jia2lin3yuan1/2020-instanceSeg. 
    more » « less
  2. null (Ed.)
    Deep networks are often not scale-invariant hence their performance can vary wildly if recognizable objects are at an unseen scale occurring only at testing time. In this paper, we propose ScaleNet, which recursively predicts object scale in a deep learning framework. With an explicit objective to predict the scale of objects in images, ScaleNet enables pretrained deep learning models to identify objects in the scales that are not present in their training sets. By recursively calling ScaleNet, one can generalize to very large scale changes unseen in the training set. To demonstrate the robustness of our proposed framework, we conduct experiments with pretrained as well as fine-tuned classification and detection frameworks on MNIST, CIFAR-10, and MS COCO datasets and results reveal that our proposed framework significantly boosts the performances of deep networks. 
    more » « less
  3. null (Ed.)
    Recently, several networks that operate directly on point clouds have been proposed. There is significant utility in understanding their mechanisms to classify point clouds, which can potentially help diagnosing these networks and designing better architectures. In this paper, we propose a novel approach to visualize features important to the point cloud classifiers. Our approach is based on smoothing curved areas on a point cloud. After prominent features were smoothed, the resulting point cloud can be evaluated on the network to assess whether the feature is important to the classifier. A technical contribution of the paper is an approximated curvature smoothing algorithm, which can smoothly transition from the original point cloud to one of constant curvature, such as a uniform sphere. Based on the smoothing algorithm, we propose PCI-GOS (Point Cloud Integrated-Gradients Optimized Saliency), a visualization technique that can automatically find the minimal saliency map that covers the most important features on a shape. Experiment results revealed insights into different point cloud classifiers. The code is available at https://github.com/arthurhero/PC-IGOS 
    more » « less
  4. null (Ed.)
    We propose a novel end-to-end deep scene flow model, called PointPWC-Net, that directly processes 3D point cloud scenes with large motions in a coarse-to-fine fashion. Flow computed at the coarse level is upsampled and warped to a finer level, enabling the algorithm to accommodate for large motion without a prohibitive search space. We introduce novel cost volume, upsampling, and warping layers to efficiently handle 3D point cloud data. Unlike traditional cost volumes that require exhaustively computing all the cost values on a high-dimensional grid, our point-based formulation discretizes the cost volume onto input 3D points, and a PointConv operation efficiently computes convolutions on the cost volume. Experiment results on FlyingThings3D and KITTI outperform the state-of-the-art by a large margin. We further explore novel self-supervised losses to train our model and achieve comparable results to state-of-the-art trained with supervised loss. Without any fine-tuning, our method also shows great generalization ability on the KITTI Scene Flow 2015 dataset, outperforming all previous methods. The code is released at https://github.com/DylanWusee/PointPWC. 
    more » « less
  5. Heatmap regression with a deep network has become one of the mainstream approaches to localize facial landmarks. However, the loss function for heatmap regression is rarely studied. In this paper, we analyze the ideal loss function properties for heatmap regression in face alignment problems. Then we propose a novel loss function, named Adaptive Wing loss, that is able to adapt its shape to different types of ground truth heatmap pixels. This adaptability penalizes loss more on foreground pixels while less on background pixels. To address the imbalance between foreground and background pixels, we also propose Weighted Loss Map, which assigns high weights on foreground and difficult background pixels to help training process focus more on pixels that are crucial to landmark localization. To further improve face alignment accuracy, we introduce boundary prediction and CoordConv with boundary coordinates. Extensive experiments on different benchmarks, including COFW, 300W and WFLW, show our approach outperforms the state-of-the-art by a significant margin on various evaluation metrics. Besides, the Adaptive Wing loss also helps other heatmap regression tasks. 
    more » « less