Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In this work, we used in-situ acoustic emission sensors for online monitoring of part quality in laser powder bed fusion (LPBF) additive manufacturing process. Currently, sensors such as thermo-optical imaging cameras and photodiodes are used to observe the laser-material interactions on the top surface of the powder bed. Data from these sensors is subsequently analyzed to detect onset of incipient flaws, e.g., porosity. However, these existing sensing modalities are unable to penetrate beyond the top surface of the powder bed. Consequently, there is a burgeoning need to detect thermal phenomena in the bulk volume of the part buried under the powder, as they are linked to such flaws as support failures, poor surface finish, microstructure heterogeneity, among others. Herein, four passive acoustic emission sensors were installed in the build plate of an EOS M290 LPBF system. Acoustic emission data was acquired during processing of stainless steel 316L samples under differing parameter settings and part design variations. The acoustic emission signals were decomposed using wavelet transforms. Subsequently, to localize the origin of AE signals to specific part features, they were spatially synchronized with infrared thermal images. The resulting spatially localized acoustic emission signatures were statistically correlated (R2 > 85%) to multi-scale aspects of part quality, such as thermal-induced part failures, surface roughness, and solidified microstructure (primary dendritic arm spacing). This work takes a critical step toward in-situ, non-destructive evaluation of multi-scale part quality aspects using acoustic emission sensors.more » « lessFree, publicly-accessible full text available February 6, 2026
-
Abstract The main research goal of this study is to decipher the intercorrelation between process-induced thermal-structure-property relationships of Stainless Steel 316L fabricated by laser powder bed fusion. The objective therein is achieved by explaining and quantifying the effect of processing parameters and part-scale thermal history on microstructure evolution and mechanical properties of these parts. Multiple previous works have correlated the effect of process parameters on flaw formation, microstructural features evolved and functional properties; however, a lack of understanding remains in the underlying effect of the thermal history on part microstructure and mechanical properties. The thermal distribution, or thermal history, of the part as it is being built layer-by-layer is influenced by the processing parameters, material properties and shape of the part. The thermal history influences the microstructure by changing the grain structure evolution, which affects the part properties. Therefore, the novelty of this paper lies in illuminating the process-thermal history-microstructure-property relationship in laser powder bed fusion. Characterization of tensile specimens processed at a variety of conditions reveal a direct influence of the choice of process parameters on the dendritic structure and the grain orientations. A high energy density leads to <100> textured columnar dendritic grains and low energy density leads to randomly oriented equiaxed grains as a result of the shifting heat influx. The tensile properties are correlated with the inherent microstructure. Through future work involving fracture surface analysis, the texture, grain size and porosity is expected to influence the inherent fracture mechanism. This work demonstrates that an understanding of thermal distribution within a printed part can inform the choice of processing conditions to generate the final microstructure as per the specified functional requirements. Thus, this paper lays the foundation for future prediction and control of microstructure and functional properties in laser powder bed fusion by identifying the root fundamental thermal phenomena that influences the microstructure evolution and part properties.more » « less
-
Abstract In droplet-on-demand liquid metal jetting (DoD-LMJ) additive manufacturing, complex physical interactions govern the droplet characteristics, such as size, velocity, and shape. These droplet characteristics, in turn, determine the functional quality of the printed parts. Hence, to ensure repeatable and reliable part quality it is necessary to monitor and control the droplet characteristics. Existing approaches for in-situ monitoring of droplet behavior in DoD-LMJ rely on high-speed imaging sensors. The resulting high volume of droplet images acquired is computationally demanding to analyze and hinders real-time control of the process. To overcome this challenge, the objective of this work is to use time series data acquired from an in-process millimeter-wave sensor for predicting the size, velocity, and shape characteristics of droplets in DoD-LMJ process. As opposed to high-speed imaging, this sensor produces data-efficient time series signatures that allows rapid, real-time process monitoring. We devise machine learning models that use the millimeter-wave sensor data to predict the droplet characteristics. Specifically, we developed multilayer perceptron-based non-linear autoregressive models to predict the size and velocity of droplets. Likewise, a supervised machine learning model was trained to classify the droplet shape using the frequency spectrum information contained in the millimeter-wave sensor signatures. High-speed imaging data served as ground truth for model training and validation. These models captured the droplet characteristics with a statistical fidelity exceeding 90%, and vastly outperformed conventional statistical modeling approaches. Thus, this work achieves a practically viable sensing approach for real-time quality monitoring of the DoD-LMJ process, in lieu of the existing data-intensive image-based techniques.more » « less
-
null (Ed.)Abstract The objective of this work is to provide experimental validation of the graph theory approach for predicting the thermal history in additively manufactured parts that was recently published in the ASME transactions. In the present paper the graph theory approach is validated with in-situ infrared thermography data in the context of the laser powder bed fusion (LPBF) additive manufacturing process. We realize this objective through the following three tasks. First, two types of test parts (stainless steel) are made in two corresponding build cycles on a Renishaw AM250 LPBF machine. The intent of both builds is to influence the thermal history of the part by changing the cooling time between melting of successive layers, called interlayer cooling time. Second, layer-wise thermal images of the top surface of the part are acquired using an in-situ a priori calibrated infrared camera. Third, the thermal imaging data obtained during the two builds were used to validate the graph theory-predicted surface temperature trends. Furthermore, the surface temperature trends predicted using graph theory are compared with results from finite element analysis. As an example, for one the builds, the graph theory approach accurately predicted the surface temperature trends to within 6% mean absolute percentage error, and approximately 14 Kelvin root mean squared error of the experimental data. Moreover, using the graph theory approach the temperature trends were predicted in less than 26 minutes which is well within the actual build time of 171 minutes.more » « less
-
This work concerns the laser powder bed fusion (LPBF) additive manufacturing process. We developed and implemented a physics-based approach for layerwise control of the thermal history of an LPBF part. Controlling the thermal history of an LPBF part during the process is crucial as it influences critical-to-quality characteristics, such as porosity, solidified microstructure, cracking, surface finish, and geometric integrity, among others. Typically, LPBF processing parameters are optimized through exhaustive empirical build-and-test procedures. However, because thermal history varies with geometry, processing parameters seldom transfer between different part shapes. Furthermore, particularly in complex parts, the thermal history can vary significantly between layers leading to both within-part and between-part variation in properties. In this work, we devised an autonomous physics-based controller to maintain the thermal history within a desired window by optimizing the processing parameters layer by layer. This approach is a form of digital feedforward model predictive control. To demonstrate the approach, five thermal history control strategies were tested on four unique part geometries (20 total parts) made from stainless steel 316L alloy. The layerwise control of the thermal history significantly reduced variations in grain size and improved geometric accuracy and surface finish. This work provides a pathway for rapid, shape-agnostic qualification of LPBF part quality through control of the causal thermal history as opposed to expensive and cumbersome trial-and-error parameter optimization.more » « lessFree, publicly-accessible full text available August 1, 2026
-
Abstract The goal of this work is to predict the effect of part geometry and process parameters on the instantaneous spatial distribution of heat, called the heat flux or thermal history, in metal parts as they are being built layer-by-layer using additive manufacturing (AM) processes. In pursuit of this goal, the objective of this work is to develop and verify a graph theory-based approach for predicting the heat flux in metal AM parts. This objective is consequential to overcome the current poor process consistency and part quality in AM. One of the main reasons for poor part quality in metal AM processes is ascribed to the heat flux in the part. For instance, constrained heat flux because of ill-considered part design leads to defects, such as warping and thermal stress-induced cracking. Existing non-proprietary approaches to predict the heat flux in AM at the part-level predominantly use mesh-based finite element analyses that are computationally tortuous — the simulation of a few layers typically requires several hours, if not days. Hence, to alleviate these challenges in metal AM processes, there is a need for efficient computational thermal models to predict the heat flux, and thereby guide part design and selection of process parameters instead of expensive empirical testing. Compared to finite element analysis techniques, the proposed mesh-free graph theory-based approach facilitates layer-by-layer simulation of the heat flux within a few minutes on a desktop computer. To explore these assertions we conducted the following two studies: (1) comparing the heat diffusion trends predicted using the graph theory approach, with finite element analysis and analytical heat transfer calculations based on Green’s functions for an elementary cuboid geometry which is subjected to an impulse heat input in a certain part of its volume, and (2) simulating the layer-by-layer deposition of three part geometries in a laser powder bed fusion metal AM process with: (a) Goldak’s moving heat source finite element method, (b) the proposed graph theory approach, and (c) further comparing the heat flux predictions from the last two approaches with a commercial solution. From the first study we report that the heat flux trend approximated by the graph theory approach is found to be accurate within 5% of the Green’s functions-based analytical solution (in terms of the symmetric mean absolute percentage error). Results from the second study show that the heat flux trends predicted for the AM parts using graph theory approach agrees with finite element analysis with error less than 15%. More pertinently, the computational time for predicting the heat flux was significantly reduced with graph theory, for instance, in one of the AM case studies the time taken to predict the heat flux in a part was less than 3 minutes using the graph theory approach compared to over 3 hours with finite element analysis. While this paper is restricted to theoretical development and verification of the graph theory approach for heat flux prediction, our forthcoming research will focus on experimental validation through in-process sensor-based heat flux measurements.more » « less
An official website of the United States government
