skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1752378

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Texturing the battery electrode to create low‐tortuosity ordered structures can significantly improve the sluggish mass transport in thick electrodes (areal mass loading>20 mg/cm2) during the energy storage electrochemical reactions. In this work, we presented an efficient and effective method to regulate the electrode structure by creating aligned channels throughout the thickness of the electrode. The method combines acoustic manipulation of particles and nonsolvent induced phase inversion and is highly compatible with a wide range of materials used in various battery chemistries. The textured electrodes show better structural integrity compared to electrodes of similar mass loading made with acoustic patterning only and with conventional solution casting. Compared with electrodes made with phase inversion only, it exhibits lower tortuosity, enhanced ion transport/kinetics, better rate capability and cyclic stability. 
    more » « less
  2. By tuning the composition of the non-solvent bath used in the non-solvent induced phase inversion process for fabricating thick and low-tortuosity battery electrodes, optimal electrochemical performances and compressive modulus were achieved. 
    more » « less
  3. An acoustic particle patterning method generated ordered structures in battery electrodes to facilitate lithium-ion diffusion and charge transport kinetics, allowing superior rate capability and cycling stability over conventional electrodes. 
    more » « less