skip to main content


Search for: All records

Award ID contains: 1752821

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract New methods for the synthesis of 1,3-diaryltriazenes and azo dyes from aryl amines are reported. Both methods involve the formation of aryl diazonium intermediates via the transnitrosation of aryl amines with N-nitrososulfonamides. Each two-step transformation may be performed in one reaction vessel at room temperature with no precautions taken to exclude air or moisture. Several triazene and azo dye structures are reported here for the first time, demonstrating the utility of operating the two-step reaction sequence under mild conditions. 
    more » « less
    Free, publicly-accessible full text available April 25, 2024
  2. Abstract We investigate the effect of bis(imino)pyridine (BIP) ligands in guiding self-assembly of semiconducting CdSe/ZnS quantum dots (QDs) into three-dimensional multi-layered shells with diameters spanning the entire mesoscopic range, from 200 nm to 2 μm. The assembly process is directed by guest–host interactions between the BIP ligands and a thermotropic liquid crystal (LC), with the latter’s phase transition driving the process. Characterization of the shell structures, through scanning electron microscopy and dynamic light scattering, demonstrates that the average shell diameter depends on the BIP structure, and that changing one functional group in the chemical scaffold allows systematic tuning of shell sizes across the entire range. Differential scanning calorimetry confirms a relationship between shell sizes and the thermodynamic perturbation of the BIP molecules to the LC phase transition temperature, allowing analytical modeling of shell assembly energetics. This novel mechanism to controllably tune shell sizes over the entire mesoscale via one standard protocol is a significant development for research on in situ cargo/drug delivery platforms using nano-assembled structures. 
    more » « less
  3. We report a new method for regioselective aromatic bromination using lactic acid derivatives as halogen bond acceptors with N-bromosuccinimide (NBS). Several structural analogues of lactic acid affect the efficiency of aromatic brominations, presumably via Lewis acid/base halogen-bonding interactions. Rate comparisons of aromatic brominations demonstrate the reactivity enhancement available via catalytic additives capable of halogen bonding. Computational results demonstrate that Lewis basic additives interact with NBS to increase the electropositive character of bromine prior to electrophilic transfer. An optimized procedure using catalytic mandelic acid under aqueous conditions at room temperature was developed to promote aromatic bromination on a variety of arene substrates with complete regioselectivity. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
  7. The concept of “cloaking” an object is a very attractive one, especially in the visible (VIS) and near infra-red (NIR) regions of the electromagnetic spectrum, as that would reduce the visibility of an object to the eye. One possible route to achieving this goal is by leveraging the plasmonic property of metallic nanoparticles (NPs). We model and simulate light in the VIS and NIR scattered by a core of a homogeneous medium, covered by plasmonic cloak that is a spherical shell composed of gold nanoparticles (AuNPs). To consider realistic, scalable, and robust plasmonic cloaks that are comparable, or larger, in size to the wavelength, we introduce a multiscale simulation platform. This model uses the multiple scattering theory of Foldy and Lax to model interactions of light with AuNPs combined with the method of fundamental solutions to model interactions with the core. Numerical results of our simulations for the scattering cross-sections of core-shell composite indicate significant scattering suppression of up to 50% over a substantial portion of the desired spectral range (400 - 600 nm) for cores as large as 900 nm in diameter by a suitable combination of AuNP sizes and filling fractions of AuNPs in the shell.

     
    more » « less