skip to main content

This content will become publicly available on June 16, 2023

Title: Enhanced Reactivity for Aromatic Bromination via Halogen Bonding with Lactic Acid Derivatives
We report a new method for regioselective aromatic bromination using lactic acid derivatives as halogen bond acceptors with N-bromosuccinimide (NBS). Several structural analogues of lactic acid affect the efficiency of aromatic brominations, presumably via Lewis acid/base halogen-bonding interactions. Rate comparisons of aromatic brominations demonstrate the reactivity enhancement available via catalytic additives capable of halogen bonding. Computational results demonstrate that Lewis basic additives interact with NBS to increase the electropositive character of bromine prior to electrophilic transfer. An optimized procedure using catalytic mandelic acid under aqueous conditions at room temperature was developed to promote aromatic bromination on a variety of arene substrates with complete regioselectivity.
Authors:
; ; ; ; ;
Award ID(s):
1752821 2019144 1429783
Publication Date:
NSF-PAR ID:
10335933
Journal Name:
The Journal of Organic Chemistry
ISSN:
0022-3263
Sponsoring Org:
National Science Foundation
More Like this
  1. Sodium sulfite, sodium thiosulfate, and ascorbic acid are commonly used to quench free chlorine and free bromine in studies of disinfection byproducts (DBPs) in drinking water, wastewater, and recreational water. The reducing capabilities of these quenchers, however, can lead to the degradation of some redox-labile analytes. Ammonium chloride, another common quencher, converts free chlorine into monochloramine and is therefore inappropriate for analytes susceptible to chloramination. Herein, we demonstrate the utility of 1,3,5-trimethoxybenzene (TMB) as a quencher of free chlorine and free bromine. The reactivity of TMB toward free chlorine was characterized previously. The reactivity of TMB toward free bromine was quantified herein ( k HOBr,TMB = 3.35 × 10 6 M −1 s −1 ) using competition kinetics. To explore the feasibility of TMB serving as a free halogen quencher for kinetic experiments, chlorination of 2,4-dichlorophenol, bromination of anisole, and chlorination and bromination of dimethenamid-P were examined. Although TMB does not react with free chlorine or free bromine as quickly as do some (but not all) traditional quenchers, there was generally no significant difference in the experimental rate constants with TMB (relative to thiosulfate) as the quencher. By monitoring the chlorination and bromination products of TMB, free halogen residuals inmore »quenched samples were quantified. Furthermore, TMB did not affect the stabilities of DBPs ( e.g. , chloropicrin and bromoacetonitriles) that otherwise degraded in the presence of traditional quenchers. TMB could, therefore, be an appropriate quencher of free chlorine and free bromine in aqueous halogenation experiments involving redox-labile analytes and/or when selective quantification of residual free halogens is desired.« less
  2. The literature contains numerous instances where pairs of anions engage in a stable complex with one another, held together by hydrogen, halogen, and related noncovalent bonds, within the confines of a polarizable medium such as a crystal or solvent. But within the context of the gas phase, such pairs are only metastable, higher in energy than separated monomers, whose favorable dissociation is hindered by an energy barrier. Quantum calculations search for pairs of anions that might engage in a fully stable halogen-bonded dimer in the gas phase, lower in energy than the separate monomers. Each Lewis acid candidate contains an I atom attached to an alkyne, alkene, or alkane chain of variable length, terminated by a O − or COO − group, and decorated with electron-withdrawing CN substituents. Also considered are aromatic systems containing I and COO − , along with four CN substituents on the phenyl ring. Lewis bases considered were of two varieties. In addition to the simple Cl − anion, an NH 2 group was separated from a terminal carboxylate by an alkyne chain of variable length. Exothermic association reactions are achieved with Cl − paired with CN-substituted alkenes and alkanes where the I and COO −more »of the Lewis acid are separated by at least four C atoms. The energetics are especially favorable for the longer alkanes where Δ E is roughly −30 kcal mol −1 .« less
  3. Developing a comprehensive method to compute bond orders is a problem that has eluded chemists since Lewis's pioneering work on chemical bonding a century ago. Here, a computationally efficient method solving this problem is introduced and demonstrated for diverse materials including elements from each chemical group and period. The method is applied to non-magnetic, collinear magnetic, and non-collinear magnetic materials with localized or delocalized bonding electrons. Examples studied include the stretched O 2 molecule, 26 diatomic molecules, 3d and 5d transition metal solids, periodic materials with 1 to 8748 atoms per unit cell, a biomolecule, a hypercoordinate molecule, an electron deficient molecule, hydrogen bound systems, transition states, Lewis acid–base complexes, aromatic compounds, magnetic systems, ionic materials, dispersion bound systems, nanostructures, and other materials. From near-zero to high-order bonds were studied. Both the bond orders and the sum of bond orders for each atom are accurate across various bonding types: metallic, covalent, polar-covalent, ionic, aromatic, dative, hypercoordinate, electron deficient multi-centered, agostic, and hydrogen bonding. The method yields similar results for correlated wavefunction and density functional theory inputs and for different S Z values of a spin multiplet. The method requires only the electron and spin magnetization density distributions as input andmore »has a computational cost scaling linearly with increasing number of atoms in the unit cell. No prior approach is as general. The method does not apply to electrides, highly time-dependent states, some extremely high-energy excited states, and nuclear reactions.« less
  4. Nonoxidative alkane dehydrogenation is a promising route to produce olefins, commonly used as building blocks in the chemical industry. Metal oxides, including γ-Al 2 O 3 and β-Ga 2 O 3 , are attractive dehydrogenation catalysts due to their surface Lewis acid–base properties. In this work, we use density functional theory (DFT) to investigate nonoxidative dehydrogenation of ethane, propane, and isobutane on the Ga-doped and undoped (100) γ-Al 2 O 3 via the concerted and stepwise mechanisms. We revealed that doping (100) γ-Al 2 O 3 with Ga atoms has significant improvement in the dehydrogenation activity by decreasing the C–H activation barriers of the kinetically favored concerted mechanism and increasing the overall dehydrogenation turnover frequencies. We identified the dissociated H 2 binding energy as an activity descriptor for alkane dehydrogenation, accounting for the strength of the Lewis acidity and basicity of the active sites. We demonstrate linear correlations between the dissociated H 2 binding energy and the activation barriers of the rate determining steps for both the concerted and stepwise mechanisms. We further found the carbenium ion stability to be a quantitative reactant-type descriptor, correlating with the C–H activation barriers of the different alkanes. Importantly, we developed an alkane dehydrogenationmore »model that captures the effect of catalyst acid–base surface properties (through dissociated H 2 binding energy) and reactant substitution (through carbenium ion stability). Additionally, we show that the dissociated H 2 binding energy can be used to predict the overall dehydrogenation turnover frequencies. Taken together, our developed methodology facilitates the screening and discovery of alkane dehydrogenation catalysts and demonstrates doping as an effective route to enhance catalytic activity.« less
  5. Aqueous free bromine species ( e.g. , HOBr, BrCl, Br 2 , BrOCl, Br 2 O, and H 2 OBr + ) can react with activated aromatic compounds via electrophilic aromatic substitution to generate products with industrial applications, environmental consequences, and potentially adverse biological effects. The relative contributions of these brominating agents to overall bromination rates can be calculated via nonlinear regression analyses of kinetic data collected under a variety of solution conditions, including variations in parameters ( e.g. , [Cl − ], [Br − ], and pH) known to influence free bromine speciation. Herein, kinetic experiments conducted in batch reactors were employed to evaluate the contributions of steric and electronic effects on bromination of monosubstituted alkylbenzenes (ethyl, isopropyl, tert -butyl) and alkoxybenzenes (ethoxy, isopropoxy, tert -butoxy) and to elucidate the inherent reactivities of aqueous brominating agents towards these aromatic compounds. For bromination at the para position of alkylbenzenes, overall reactivity increased from tert -butyl < ethyl ≈ isopropyl. For bromination at the para position of alkoxybenzenes, reactivity increased from tert -butoxy < ethoxy < isopropoxy. In going from ethyl to tert -butyl and ethoxy to isopropoxy, unfavorable steric effects attenuated the favorable electronic effects imparted by the substituents. Whenmore »comparing unsubstituted benzene, alkyl-, and alkoxybenzenes, the structure of the substituent has a significant effect on bromination rates, nucleophile regioselectivity, and electrophile chemoselectivity. Hirshfeld charges were useful predictors of reactivity and regioselectivity. The experimental results were also modeled using Taft equations. Collectively, these findings indicate that steric effects, electronic effects, and brominating agents other than HOBr can influence aromatic compound bromination in solutions of free bromine.« less