skip to main content


Search for: All records

Award ID contains: 1753559

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ancient multifunctional regulatory elements underlie the evolution of butterfly wing color patterns. 
    more » « less
  2. Lavrov, Dennis (Ed.)
    Abstract The painted lady butterfly, Vanessa cardui, has the longest migration routes, the widest hostplant diversity, and one of the most complex wing patterns of any insect. Due to minimal culturing requirements, easily characterized wing pattern elements, and technical feasibility of CRISPR/Cas9 genome editing, V. cardui is emerging as a functional genomics model for diverse research programs. Here, we report a high-quality, annotated genome assembly of the V. cardui genome, generated using 84× coverage of PacBio long-read data, which we assembled into 205 contigs with a total length of 425.4 Mb (N50 = 10.3 Mb). The genome was very complete (single-copy complete Benchmarking Universal Single-Copy Orthologs [BUSCO] 97%), with contigs assembled into presumptive chromosomes using synteny analyses. Our annotation used embryonic, larval, and pupal transcriptomes, and 20 transcriptomes across five different wing developmental stages. Gene annotations showed a high level of accuracy and completeness, with 14,437 predicted protein-coding genes. This annotated genome assembly constitutes an important resource for diverse functional genomic studies ranging from the developmental genetic basis of butterfly color pattern, to coevolution with diverse hostplants. 
    more » « less
  3. null (Ed.)
    Developmental plasticity allows genomes to encode multiple distinct phenotypes that can be differentially manifested in response to environmental cues. Alternative plastic phenotypes can be selected through a process called genetic assimilation, although the mechanisms are still poorly understood. We assimilated a seasonal wing color phenotype in a naturally plastic population of butterflies ( Junonia coenia ) and characterized three responsible genes. Endocrine assays and chromatin accessibility and conformation analyses showed that the transition of wing coloration from an environmentally determined trait to a predominantly genetic trait occurred through selection for regulatory alleles of downstream wing-patterning genes. This mode of genetic evolution is likely favored by selection because it allows tissue- and trait-specific tuning of reaction norms without affecting core cue detection or transduction mechanisms. 
    more » « less